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ABSTRACT 

The independence number of a graph is the maximum number of pairwise non-

adjacent vertices of the graph. New bounds are presented for this NP-hard invariant, 

new algorithms for calculating it, as well as new theoretical techniques for investigat-

ing maximum independent sets in a graph. These include: 

1. A new, short proof of Graffiti's conjectured lower bound for the independence 

number in terms of the number of cut vertices of the graph. 

2. A new proof of an upper bound for the independence number in terms of the 

number of cut vertices, and (together with G. Henry, R. Pepper, and D. Sexton) 

the characterization of those graphs where equality of this bound holds. 

3. A faster version of Tarjan and Trojanowski's algorithm for finding maximum 

independent sets in fullerenes, together with a previously unreported computa-

tion adding to the evidence that minimizing independence is the best statistical 

predictor of fullerene stability. 

4. A characterization of those graphs whose independence number equals its ra-

dius, which was an open problem mentioned in a 1986 paper of Fajtlowicz and 

Waller. 

5. A new sufficient condition, following a conjecture of Graffiti, for the existence 

of a Hamiltonian cycle in a graph. 

6. A characterization of those graphs whose independence number equals its an-

nihilation number, which was an open problem in Pepper's 2004 dissertation 

7. A polynomial-time algorithm for finding maximum cardinality critical indepen-

dent sets, which was an open problem of Butenko and Trukhanov's 2005 preprint 
vii 



on using critical independent sets in order to speed-up finding maximum inde-

pendent sets. 

8. The invention of the critical independence number, a new polynomial-time com-

putable lower-bound for the independence number, and a polynomial-time com-

putable characterization of the graphs where these invariants are equal. 

9. A decomposition of a general graph into two unique subgraphs, such that the 

independence numbers of these graphs are additive, and where one of these 

independence number computations can be done in polynomial-time. 

10. A new and simple characterization of Konig-Egervary graphs, resulting from a 

surprising conjecture of Graffiti.pc. 
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Chapter 1 

Introduction 

Concept formation, conjecture-making, constructing counterexamples, and theorem-

proving are four of the main practices of mathematics. Among other things, this 

dissertation discusses a new graph theoretic invariant and its relationship to the 

independence number, a well-known and widely-studied graph theoretic invariant. 

Many of the theorems here were conjectured by this (human) author—but some were 

conjectured by computer programs. One of the results of Siemion Fajtlowicz's work 

on his Graffiti conjecture-making program is the demonstration that computers can 

have mathematical intuitions as good as those of human beings. 

In this chapter, the author's mathematical results are first introduced and placed 

in context. Following this is a discussion of conjecture-making and the main heuris-

tics of the Graffiti program. Mathematicians use the word "conjecture" intuitively, 

without any need for specifying necessary and sufficient conditions. Mathematics 

would continue to advance whether or not this issue was ever discussed. The issue 

does arise though in the context of designing and programming conjecture-making 

programs; ambiguity in the use of the word "conjecture" by non-mathematicians can 

affect the evaluation of programs. A definition is advanced below. This is of mathe-

matical utility for two reasons. First, a mathematician should keep in mind that her 
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mathematical activities are part of a collective enterprise and that success is measured 

in terms of our pre-existing goals. Second, researchers who want to write conjecture-

making programs must understand that a conjecture is not an arbitrary statement 

whose truth-value is unknown; it is a statement whose investigation will advance our 

collective mathematical enterprise. The last section of this Introduction also intro-

duces the heuristics used in Fajtlowicz's Graffiti program. Several conjectures in this 

dissertation are products of either Graffiti or Graffiti.pc, a descendant written by 

Fajtlowicz's former student, Ermelinda DeLaVina. This author has written two pa-

pers discussing Graffiti's heuristics and automated mathematical conjecture-making 

[57, 55]. Mathematicians including Poincare and Hadamard have investigated how 

mathematics is produced, presumably with the idea that, if it were better understood, 

mathematicians could increases the quantity and quality of mathematical research. 

Understanding Graffiti's operation, the operation of a successful conjecture-making 

program, is relevant to this investigation. 

1.1 Graphs and Graph Theory 

Informally, a graph is "dots and lines"—dots representing some objects and lines 

between pairs of them representing the existence of some relationship between the 

pair. The dots could represent cities, and lines between a pair could represent that 

there is a regularly scheduled airline route between them. A number (or weight) can 

be associated to each line representing the length of the flight. If each pair of cities has 

a regularly scheduled flight between them, it can be asked what route should be taken 

in order to travel to every one of the cities while minimizing the total flight time. Of 

course, there is an obvious method of solution: consider each possible route (there 

are only a finite number of them) and choose the shortest one. On this approach, 

one would have to consider on the order of (n — 1)! possible routes (if there are n 
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cities). If n is large, this approach is computationally infeasible. The real question is 

Figure 1.1: The Traveling Salesman Problem: find a minimal weight Hamiltonian cycle: 

starting at vertex A, visit all other vertices and return to A so that the sum of the weights 

on the traversed cycle is minimized. Can you do this in a number of steps which is a 

polynomial function of the number of vertices? 

whether there is a "fast" [polynomial-time) algorithm for solving this problem—or a 

proof that a fast algorithm is impossible. This is the Traveling Salesman Problem and 

it is (equivalent to) the most famous unsolved problem in graph theory, whether or 

not P=NP. This problem is a Millennium Prize problem [52]. It is third on Stephen 

Smale's list of "Mathematical Problems for the Next Century" [79]. He says that 

"its solution, partial results, or even attempts at its solution are likely to have great 

importance for mathematics and its development for the next century." It has been 

shown that there are hundreds of problems that are computationally equivalent to the 

Traveling Salesman problem (see, e.g., [42]). If a polynomial-time algorithm can be 

found for this problem, then polynomial-time algorithms for the others would follow; 

if there is no polynomial-time algorithm, then there cannot be one for any of the 

others. 
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Graphs are also used to represent the bonding structure of molecules. In this case 

the dots represent atoms and a line between them represents a covalent bond between 

the atoms. In fact, J. J. Sylvester, who introduced the word graph to represent these 

objects, used graphs in exactly this way, to represent what are now called chemical 

graphs (see [5, p. 66]). Of course, a graph can only represent topological features 

of a molecule; the geometry, for instance, of the molecule is lost. Nevertheless, the 

corresponding molecular theory (the Hiickel theory, see [47, 81]) has proved to be an 

often good approximation. 

These are just two of a large number of applications of graphs; many recent 

applications are mentioned in [49]. Of particular recent interest and research, and 

of large investment by Google and other world wide web (WWW) search engine 

companies, is the graph of web page linkages. 

The graphs that are considered in the following are all finite, simple graphs: there 

is at most one line between any pair of dots, and no loops. Formally these graphs can 

be defined as a set of vertices and a set of pairs of vertices, called edges. The dots 

then are vertices and the lines are edges. If v and w are vertices and {v, w} (or simply 

vw) is an edge then v and w are said to be adjacent. A graph can be represented 

in a number of ways. One way, for instance, is via its adjacency matrix. Label the 

n vertices of the graph ^1,^2,^3, . . . ,vn. Then the adjacency matrix of a graph G 

is A(G) = (dij), where a^ = 1 if vertex Vi is adjacent to vertex Vj and â - = 0 if 

these vertices are non-adjacent. Clearly there are many different adjacency matrices 

which can be used to represent a graph—each depending on a particular ordering or 

labeling of the vertices. 

A graph invariant is a number which is associated to a graph and independent of 

the representation of the graph. The order of a graph, the number of vertices n, is a 

(simple) graph invariant. The size, the number of edges m, is another. A more com-

plicated (and more interesting!) example is the independence number of a graph. A 
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set of vertices is an independent set if the vertices in the set are pairwise non-adjacent. 

The independence number is the cardinality of a maximum independent set of ver-

tices. The independence number is a well-known widely-studied NP-hard invariant 

[42]; if a "fast" algorithm were known for computing the independence number of an 

arbitrary graph, it could be transformed into a fast algorithm for solving the traveling 

salesman problem. One avenue of investigation is finding upper and lower bounds for 

the independence number. This is of theoretical interest, of use in approximating 

the independence number, in finding the exact value of the independence number in 

special cases, and in constructing algorithms for finding maximum independent sets 

and the independence number. The results in the sequel all relate to these goals, or 

to applications of the independence number. 

Many of the results in the sequel stem from conjectures of Siemion Fajtlowicz's 

Graffiti program, or of Ermelinda DeLaVina's Graffiti.pc program, discussed in the 

next section. One of Graffiti's conjectures led to the discovery, by Fajtlowicz and 

this author, that the minimization of the independence number of a fullerene is the 

best predictor of its stability [33]. Fullerenes are the third known allotrope of carbon 

(along with diamond and graphite). They were discovered by R. Curl, H. Kroto, and 

R. Smalley at Rice University in 1985 [2]. The first to be discovered was Buckmin-

sterfullerene, which appeared in experiment as a 60-atom carbon clump or cluster. 

Its structure was not known. The Fullerene Hypothesis is that the carbon atoms in 

these molecules each bond to three others, and that the structure forms a convex 

polyhedron having pentagonal and hexagonal faces (graph theoretically, a fullerene 

is a cubic planar graph whose faces are all pentagons and hexagons). For 60-atom 

carbon clusters there are 1812 mathematically possible structures (or isomers) satis-

fying the fullerene hypothesis [39]. Of these, only one has appeared in experiment. An 

unresolved question is both how to characterize those fullerenes which appear in ex-

periment and to predict which isomers will appear. Statistical evidence was presented 
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Figure 1.2: Tetrahedral Cioo: the lone 100-atom fullerene isomer with isolated pentagons 

and tetrahedral symmetry. There are 285,914 100-atom fullerene isomers. If a 100-atom 

isomer appears in experiment, Fajtlowicz and this author predict it will be this model. The 

picture was produced by the CaGe program. 

in [33] that the independence number of a fullerene correlates with its stability. More 

is presented here, together with the algorithm used to calculate the independence 

numbers of these graphs. 

In 1990 Zhang introduced the concept of a critical set, a set C such that the 

difference between the cardinalities of it and its neighbor set is maximized [84]. His 

introduction of this concept was motivated by a relation to pre-existing concepts (in-

dependent sets, and the binding and isoperimetric numbers) which measured certain 

ratios between cardinalities of certain vertex sets and their neighbors. He also intro-

duced the concept of a critical independent set, which is an independent set that is 
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also a critical set. Zhang also showed that these sets can be found in polynomial-time. 

Much later, Butenko and Trukhanov showed that the identification of critical 

independent sets is related to the problem of finding a maximum independent set 

(MIS) in a graph: they showed that any critical independent set can be extended 

to a maximum independent set [10]. The consequence of this is that the problem of 

finding a MIS can be reduced. In order to find a MIS, first find a critical independent 

set Ic. Then there must be a MIS / such that Ic C I. Ic and its neighbors can 

be removed from the graph; all that remains to do is to find a MIS J of the graph 

induced on the remaining vertices. I = Ic U J. Computationally this reduces the 

problem of solving an NP-hard problem on a graph to one on a (possibly smaller) 

subgraph. The reduction can be found in polynomial-time. 

A graph can have critical independent sets of different cardinalities. In fact, for 

some graphs, the empty set and a set containing as many as half of the vertices are 

both critical independent sets. Identifying the empty set will yield no reduction (and 

hence no algorithmic speed-up) of the MIS problem. Identifying the larger critical 

independent set may result in a complete reduction of the problem. In their paper, 

Butenko and Trukhanov mentioned the open problem of finding maximum cardinality 

critical independent sets. The solution is presented in the sequel. The definition of the 

critical independence number as the cardinality of a maximum independent set led to 

a conjecture of DelaVina's Graffiti.pc program giving a simple new characterization 

of Konig-Egervary graphs. The conjecture and proof are in Section 3.4. 

1.2 Conjectures and Conjecture-making 

Mathematicians invent new concepts, conjecture and prove theorems, and find coun-

terexamples to conjectures. The importance and centrality of conjecture-making in 

the process of mathematical research is often overlooked—but one cannot prove a the-
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orem without first having a conjecture. Some rare mathematicians, including Paul 

Erdos, are as well-known for their conjectures as for their theorems. 

Research on artificial intelligence began in the 1950's. Researchers were interested 

in what mental processes could be mechanized. Mathematics, due to its formality, 

was an early and obvious area to investigate. Most of the work that has been done has 

been in automated theorem-proving. Automated conjecture-making has been largely 

overlooked. Hao Wang did some initial work on this in the late 1950's and early 1960's 

[83] and raised the fundamental question: from a mass of statements with unknown 

truth-values, which should be investigated, which are "significant"? 

What is a conjecture? Any mathematician has a pretty good idea what a conjec-

ture is, and there has not been any real effort towards specifying precise necessary 

and sufficient conditions. Nevertheless, if one wants to write or evaluate a conjecture-

making program some clarity about what is meant is required. 

In the 1970's Douglas Lenat wrote a program AM that produced known mathe-

matical statements and theorems including Goldbach's Conjecture [58, 67, 63, 64, 62, 

66, 65, 60, 61, 59, 76]. Nevertheless, it did not produce any statements that a working 

mathematician would call a conjecture or that would initiate any new mathematical 

investigation. An attempt is made here to introduce some clarity. A main conse-

quence of this investigation is an intrinsic definition of a "conjecture" modeled after 

Einstein's definition of "simultaneity." It is an important observation that our math-

ematical judgments are in the context of our mathematical practice—which typically 

begins with problems and interests of our teachers and the broader mathematical 

community. 

Wang and Lenat raised the issue of how to program a machine to produce conjec-

tures. Siemion Fajtlowicz solved this problem in the 1980's when he initially wrote 

his Graffiti program. This program has produced, among other things, conjectured 

bounds for the independence number of a graph. Graffiti uses few examples, imitating 
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what seems to be true of human conjecture-makers. Its heuristics, described below, 

are almost certainly of wider applicability and will be the basis of future experimen-

tation by this author. 

The following material is adapted from this author's [56]. 

What counts as a "conjecture" and, thus, success or failure of various programs 

that might be called "conjecture-making programs" is partly a terminological ques-

tion. The word "conjecture" is used in various ways: a teacher might call a student's 

proposal for trisecting an angle with ruler-and-compass a "conjecture" even though 

he knows such a construction is impossible; a mathematician who proposes some non-

novel proposition may be credited with having made a "conjecture," for instance if 

evidence suggests that it was put forth independently. 

That a statement is "interesting" is a plausible necessary condition for mathe-

matical conjecture-hood. When is a statement interesting? What are the criteria 

for this? A statement might be defined to be interesting if it inspired mathematical 

research resulting in publication. That a statement led to a mathematical publication 

may not be due to any fact about the statement—it could be for non-mathematical 

reasons. A researcher may have investigated the truth of a statement simply because 

it struck her fancy, was entertaining, in the way a crossword puzzle is entertaining. 

The pursuit of most mathematical research may involve this element—but the pursuit 

of various human whims can hardly provide the criteria for distinguishing what to 

count as a conjecture. 

What epitomizes mathematical research is that it contributes to the advance-

ment of mathematics. The clearest advances occur when our existing mathematical 

questions are answered. The determination of the truth-value of an "interesting" 

mathematical statement, however interesting-ness is defined, may or may not ad-

vance or answer any of our existing mathematical questions. Hence, the clearest way 

to define what to count as a "conjecture" is not in terms of concepts which may be 
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extrinsic to our mathematical goals, but to define it intrinsically, directly in terms of 

our mathematical goals. A conjecture should be defined to be a new mathematical 

proposition the determination of whose truth would be relevant to the advancement of 

our existing mathematical questions. G. H. Hardy famously claimed that a mathe-

matician's product should be judged by its "beauty" and "seriousness." He described 

the seriousness of a mathematical theorem 

in the significance of the mathematical ideas which it connects. We may 

say, roughly, that a mathematical idea is "significant" if it can be con-

nected in a natural and illuminating way, with a large complex of other 

mathematical ideas. Thus a serious mathematical theorem, a theorem 

which connects significant ideas, is likely to lead to important advances 

in mathematics itself and even in other sciences. [50, p. 89] 

Applied to novel mathematical statements, a conjecture, as here defined, would have 

some degree of "seriousness" (as Hardy meant the word). 

The mere novelty of a statement cannot be a sufficient condition for conjecture-

hood—it is trivial to produce new statements (or to write a program to produce 

them). Being new, though, is a necessary condition. If a human or program today 

conjectured that there are infinitely many twin primes (pairs of primes of the form 

p and p + 2), it would not be a contribution to the advancement of mathematics 

as this conjecture is already known, discussed and researched—and we would not 

credit the human or program with having made the conjecture. A new formula for 

the exact number of primes up to n, a new formula for the exact number or even a 

bound for any mathematical quantity for which formulas are sought, a proposition 

that would imply the existence or non-existence of odd perfect numbers, would all 

count as conjectures on this definition. The definition of "conjecture" given here 

provides an unambiguous criterion, removed from the vagaries of our psychology and 

sociology, and explained immediately with reference to actual mathematical practice. 
10 



Among statements which count as conjectures under this definition, there is a con-

tinuum of relevance: these conjectures are certainly not of equal value—knowledge of 

the truth-values of some of them will answer or advance more of our mathematical 

questions than others. (Similarly, with Hardy's criterion for the "seriousness" of a 

mathematical theorem, there is a continuum of seriousness—some theorems connect 

more mathematical ideas than others.) 

Graffiti, a program conceived by Fajtlowicz at the University of Houston (and 

developed, from 1990 to 1993, with Ermelinda DeLaVina), was the first program 

to have actually made (research) conjectures. The statements Graffiti has produced 

are largely novel. Since the 1980s, Fajtlowicz has maintained a list, Written on the 

Wall (WoW), of hundreds of these statements [30]. They have inspired research by 

numerous mathematicians. There are numerous papers, theses, and dissertations in 

which these statements (or weaker or stronger variants) are proved or disproved.1 

Graffiti's collaborators include such well-known graph theorists as Noga Alon, Bela 

Bollobas, Fan Chung, Paul Erdos, Jerry Griggs, Daniel Kleitman, Laszlo Lovasz, Paul 

Seymour and Joel Spencer [7, 11, 20, 21, 44, 53, among others]. 

Many of Graffiti's statements are explicit bounds for quantities for which bounds 

are desired; others imply bounds. Mathematicians have published numerous papers 

on bounds for various graph-theoretic quantities (invariants), for instance, the in-

dependence number of a graph; Graffiti's statements have provided new bounds for 

many of these quantities and thus these statements are conjectures. 

Graffiti's first conjectures were in the field of graph theory. Its underlying ideas, 

as described in Fajtlowicz's papers [23, 25, 27, in particular], apply not just to graphs: 

Graffiti has also made conjectures in geometry, number theory, and chemistry— 

conjectures about the structure of fullerenes (as represented by their graphs) have 

already led to papers by, among others, the fullerene expert Patrick Fowler [37, 31, 33]. 
1A partial list can be found on the WWW at: cms.dt.uh.edu/faculty/delavinae/wowref.html. 
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One of Graffiti's conjectures led to the discovery, by Fajtlowicz and this author, that 

the minimization of the independence number of a fullerene is at least as good a pre-

dictor of stability as several predictors which have been used by chemists in predicting 

the stability of these molecules [33]. 

Suppose conjectures about objects of a given type (for example, graphs) are de-

sired, and that representations of some number of these objects, 0\, 02, • • •, On, are 

stored in the computer's memory. An invariant of these objects is a function which 

associates a number to each of the objects (in the case of graphs, the independence 

number of the graph is an invariant). Let o>x, a2, • • •, cxr be computable invariants: 

for an object O, oti = ai(0)). Let fi, f2, • • •, fs represent operations of some alge-

braic system (these might include, for instance, the ordinary arithmetic operators 

"plus," "times," &c , or any other unary, binary or n-ary operators.) Any term, for 

instance, f (011,012), represents a new numerical invariant. (If "plus" is an operation, 

then OL\ + Q;2 is a term—representing a new invariant). Statements can then be formed 

from relations of these terms. If t and s are two such terms, the expression t < s— 

which should be interpreted as the statement, "For every object O (of the type of 

object under consideration), t(0) < s(0)"—is a candidate for a conjecture. 

Graffiti's main heuristic for culling the stream of candidate conjectures is the 

Dalmation heuristic [27, pp. 370-371]. Given a statement of the form t < s and a 

(possibly empty) database of pre-existing conjectures of similar form, t < u\, t < 112, 

..., t < ui—the program checks if the statement "s(0) < ux(0) and s(0) < u2(0) 

and . . . an d s(0) < ui(0)" is true for at least one of the objects O from the set 

0\,..., On. That is, it checks if there is an object for which the value of the candidate 

upper bound is less than the minimum value of the existing conjectured upper bounds. 

If it is, then, with respect to this object, the relation says something "stronger" than 

all the stored conjectures and, with respect to the objects stored in memory, the 

relation t < s says something informative—that is, the relation says something that 
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was not implied by the totality of the previous conjectures of that form that had been 

kept in the program's database—so the relation remains a candidate for Graffiti to add 

to the database of conjectures. Otherwise, Graffiti rejects the relation as a possible 

conjecture—with respect to the databases of objects and pre-existing conjectures it 

is uninformative. 

The second heuristic, applied to those relations which survive the Dalmatian 

heuristic, is to test for the truth of the relation with respect to the stored objects. If 

the relation is true of all of these objects then it is added to the database of conjec-

tures; and if the relation is false for any of these objects then the general statement 

that the relation of term functions (the relation of invariants) represents is false—and 

the relation is not accepted as a conjecture. These first two heuristics are the heart 

of the program and express the following principle of Fajtlowicz: make the strongest 

conjecture for which no counterexample is known. 

Another heuristic used in Graffiti is applicable only when objects of a proper 

superclass of objects are already stored in the computers memory, the Echo heuristic. 

[24, p. 190] Suppose the database of objects includes O j , . . . , O m , Om+i,...,On of 

a type A and conjectures are desired of a type B, a subclass of A. Suppose the 

objects of type B are the objects 0\,..., Om. The Echo heuristic is used to cull those 

possible conjectures which are true of each of the objects O m + i , • • •, On: conjectures 

which could be true of all objects of type A—when what is desired are conjectures 

about its proper subclass B—are not specific enough and are rejected. In Fajtlowicz's 

papers he often calls this superclass, the "background." Thus, if conjectures about 

fullerenes (fullerene graphs) are desired, Graffiti can be directed to cull all conjectures 

about graphs in general: here graphs are the superclass and fullerenes are the proper 

subclass; the resulting conjectures will be true of the fullerenes in the database of 

graphs but false for at least one of the non-fullerene graphs. 

Grafflti's conjectures may, naturally, be false. These can be removed by inform-
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ing the program of a counterexample, that is, by adding a new representation to 

the program's database of objects. Counterexamples can be found automatically, by 

producing representations of objects of the given type and testing the stored con-

jectures against them, or counterexamples can be provided by another intelligent 

agent—whether human or another computer. 

Graffiti's operation is sped along by keeping its databases of objects and conjec-

tures relatively small. The program only stores (representations of) objects which 

it has found "informative," that is, which have served as a counterexample to some 

previously made conjecture. Graffiti's database of conjectures is kept relatively small 

by eliminating conjectures that are no longer informative. Whenever a new relation 

is added to the database of conjectures, it is possible that one or more pre-existing 

relations are no longer informative (with respect to the objects stored in the com-

puter): if there is an object for which a bound is better than those given by all the 

other conjectured bounds then this bound is kept, otherwise it is removed (as, with 

respect to the stored objects, it does not improve on the other existing bounds). This 

implies that the number of conjectured bounds of a given form (for instance, upper 

bounds for a given invariant), stored at a given moment, can never exceed the number 

of objects stored at that moment. 

Graffiti's operation may been seen as mimicking the brain's operation in the sense 

that our brains do not and cannot store records of all the specific objects and relations 

holding between those objects that we encounter and experience; only some of those 

objects and relations make an "impression." Furthermore, just as we humans do, 

Graffiti can fall back on previously accepted but superseded beliefs when its present 

beliefs are proved wrong. 
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1.3 Notation and Terminology 

The terminology and notation in graph theory is not consistent. In particular the 

terminology in chemical graph theory is quite a bit different than that used in well-

known graph theory texts like [9]. Chemists, for instance, say that a bipartite graph 

is alternant. Outside of graph theory, graphs are often called networks. The notation 

used is largely consistent with [9], which should also be consulted if any terminology 

is not defined here. 

Most, if not all, of the following definitions appear in the sequel where the con-

cept is first introduced. This glossary was primarily conceived as a reference for the 

convenience of the reader who has forgotten a definition that was introduced earlier 

in the text. Thus, the definitions are presented in alphabetical order. 

• For a graph G with vertices V = {vx, v2, • •., vn}, having degrees dt = d(vi), with 

d\ < d2 < . . . < dn, and having e edges, the annihilation number a = a(G) 

is defined to the the largest index such that 5Z"=i di < e. Pepper originally 

defined the annihilation number of a graph in terms of a reduction process on 

the degree sequence of the graph (akin to the Havel-Hakimi process; see, for 

example, [44]). The definition here is due to Fajtlowicz. The definitions are 

proved to be equivalent in [73]. 

• A graph G is bipartite if there are independent sets A and B such that V(G) —-

A U B. A bipartite graph can be colored with two colors such that adjacent 

vertices are colored different colors. The independence number of any bipartite 

graph can be computed in polynomial-time. 

• The chromatic number x of a graph G is the minimum number of colors that 

are needed to color the vertices of G such that no pair of adjacent vertices has 

the same color. 
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• A clique in a graph G is a set of vertices C such that, for each pair of vertices 

x,y £ V(G), xy is an edge in G; that is the set C induces a complete subgraph 

in G. The clique number is the cardinality of a maximum clique. 

• A graph is complete if, for every pair of vertices x, y e V(G), xy is an edge in 

G. 

• The complement G of a graph G is the graph with vertex set V(G) and, for 

vertices x,y G V(G), edge xy £ i?(G) if, and only if, xy £ E(G). 

• A component of a graph G is a maximal connected subgraph. 

• A graph is connected is there is a path between any pair of its vertices. 

• A vertex v of a graph is a connector if v is not a cut vertex. 

• The critical difference of a graph G is the maximum value of \S\ — \N(S)\ for 

any (possibly empty) subset S of V(G). Zhang showed that this is the same as 

the maximum value of |J| — |iV-(J)| for any (possibly empty) independent subset 

I oiV(G) [84]. 

• A critical set in a graph G is any set of vertices S such that IS"! — ^(S1)! 

equals the critical difference of G. Zhang showed that if S is a critical set, then 

S \ N(S) is a critical set which is independent [84]. A critical independent 

set is such a set. The critical independence number a' is the cardinality of 

a maximum critical independent set. It is a lower bound for the independence 

number of the graph. 

• A graph is cubic if every vertex of the graph has degree three, that is if the 

graph is regular of degree three. Cubic graphs are also called trivalent. 

• A vertex v of a graph G is a cut vertex if the number of components of G — v 

is greater than the number of components of G. 
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• A cycle in a graph G is a path f1; w2, . . . ,Vk, together with the edge {fi,ffc} 

(assuming vertices v\ and Vk are adjacent). 

• The degree d(v) of a vertex v in a graph is the number of edges incident to v. 

In a simple graph this number is the same number as the number of vertices 

adjacent to v. 

• The distance d(v,w) between vertices v and w in the same component of 

a graph G is the length of a shortest path between the vertices. If v = 
vQiviiv2i- • • ivk is a path which minimizes the number of vertices—a shortest 

path—then d(y, w) = k. 

• A subset S of the vertex set is a dominating set in the graph if every vertex 

is either in 3 or adjacent to a vertex in 3. The dominance number 7 is the 

cardinality of a minimum dominating set. 

• The eccentricity of a vertex v in a graph G is the maximum distance d(v, w), 

for every vertex w in the component of G containing v. 

• A fullerene is a cubic, planar graph whose faces are either hexagons or pen-

tagons. 

• A Hamiltonian cycle (or spanning cycle) in a graph is a cycle which includes 

all of the vertices of the graph. A Hamiltonian path is a path which includes 

all of the vertices. A Hamiltonian graph is one having a Hamiltonian cycle. 

Determining whether a graph is Hamiltonian is an NP-hard problem. 

• An independent set of vertices in a graph is a set of vertices which are pair-

wise non-adjacent. The independence number a of a graph is the cardinality 

of a maximum independent set. Many books and papers use the symbol @o for 

the independence number. 
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• If S is a subset of vertices of a graph G, then the graph which consists of the 

vertices S together with all those edges in G incident to a pair of vertices in S 

is the induced subgraph G[S]. 

• A Konig-Egervary graph is a graph where the sum of the independence and 

matching numbers equals the number of vertices of the graph (a + p = n). 

Bipartite graphs are Konig-Egervary graphs. 

• A matching in a graph is a set of edges such that no pair of the edges are 

incident to the same vertex, that is, where no two of the edges have a common 

endpoint; a matching is an independent set of edges. The matching number 

p of a graph is the cardinality of a maximum matching. A perfect matching 

is a matching that covers all of the vertices of the graph (thus, n = 2//). A 

graph has a pseudo-perfect matching if the graph formed by deleting any 

single vertex has a perfect matching. 

• The neighbors N(S) of a set of vertices S in a graph G are all those vertices 

in V(G) adjacent to any vertex v e S. 

• A path is a sequence of distinct vertices vi,V2,..-,Vk such that each vertex in 

the sequence is adjacent to its successor. 

• The path covering number p of a graph G is the minimum number of vertex 

disjoint paths that cover (or contain) all of the vertices of G. If a graph has a 

Hamiltonian path, then p = 1. 

• A pendant vertex (or simply, a pendant) is a vertex of degree one, necessarily 

incident to exactly one edge. 

• A planar graph is one that can be embedded in the plane without any edge 

crossings. 
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• The radius of a connected graph is the minimum eccentricity of all of its ver-

tices. 

• The Randic index R of a graph G is the sum, over all the edges of G, of the 

reciprocal of the products of the degree weights of the two vertices incident to 

the edge. That is, R = E ^ G E ( G ) Sftfer 

• A graph is regular if the degrees of its vertices are the same. 

• A set of edges M of a graph saturates a vertex v if v is incident to at least one 

edge in M. A vertex which is not incident to any of these edges is unsaturated 

(with respect to M). 

• A vertex cover of a graph is a set of vertices such that every edge of the graph 

is incident to at least one of the vertices. The vertex covering number r of 

a graph is the cardinality of a minimum vertex cover. Lovasz and Plummer [70] 

use this notation. Bondy and Murty [9] use (5. 

• The Wiener index. W of a connected graph G is the sum, over all pairs of ver-

tices of G, of the distances between those pairs. That is, W = £ \ w\Cv d{v, w). 
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Chapter 2 

Graph-theoretic Independence, the 

Independence Number, Bounds 

and Applications 

A set of vertices in a graph is independent if the vertices in the set are pairwise 

non-adjacent or, equivalently, if the graph has no edge incident to two of the vertices 

in the set. The independence number of a graph is the cardinality of a maximum 

independent set. 

Some of the basic facts about the independence number of a graph include the 

following: For the complete graph on n vertices, Kn, a(Kn) = 1. For the cycle on 

n vertices, Cn, a{Cn) = [_§J- For the path on n vertices, Pn, a(Pn) = [|~|. For a 

bipartite graph G with bipartition (X, Y), a{G) > max{\X\, \Y\}. 

The independence number is directly and simply related to many other graph 

invariants, including the chromatic number x, the clique number c, the vertex covering 

number r , the domination number 7 and the matching number \i. For any graph G, 

x{G)a{G) > n(G), c(G) — a(G) and, conversely, c(G) = a(G). For any graph G, 

a(G) + T(G) = n(G) (this is one of the Gallai Identities, see [70]). For any graph G, 
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Figure 2.1: (a) The truncated icosahedron with pentagons highlighted and (b) with a 

24-vertex maximum independent set highlighted. 

if I is a maximum independent set then every vertex in V(G) \ I must be adjacent 

to some vertex in / . Thus, I is a dominating set and 7(G) < a(G). A necessary 

condition relating the matching and independence numbers is: a > n — 2/j,. This is 

explained in the next subsection. 

Bounds for the independence number are of theoretical and practical interest. 

Several, including the Caro-Wei lower bound, can be found in Gutin's survey [46] in 

the Handbook of Graph Theory. One very good upper bound, Cvetkovic's spectral 

bound, is not included there. For graph G with adjacency matrix A(G), the spectrum 

of G is the set Sp(G) of eigenvalues of A{G). While the adjacency matrix of G is not 

uniquely defined, the spectrum is—it is same for each adjacency matrix. Let po, p+ 

and p- be the number of zero, positive and negative eigenvalues, respectively. Then 

Cvetkovic's Theorem [13, p. 88] is that, for any graph, a < po + m m ( p + ) p . } . 

Several bounds, with very simple forms, were conjectured by Fajtlowicz's Graffiti 

program. These include the radius, average distance, and residue lower bounds. The 

first follows immediately from the Induced Path Lemma: that every connected graph 

must contain an induced path of length at least 2r — 1 [19, 22]. The second bound 
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was proved by Chung [11] and published in a 1988 paper which is perhaps the first 

paper due to a conjecture of a computer program. The third bound was originally 

proved by Favaron, Maheo and Sacle. Various simpler proofs have been published 

(including, for instance, one by Griggs and Kleitman [44]). 

Other bounds for the independence number, in terms of the number of cut vertices 

in a graph and its critical independence number, are discussed and proved in the 

sequel. 

2.1 Matchings and Independence Algorithms 

A matching in a graph is a set of edges, no pair of which are incident to the same 

vertex; in other words, a matching is an independent set of edges. The matching 

number ^ of a graph is the cardinality of a maximum matching. The independence 

number is related to matchings and the matching number via the fact that, if M is 

a maximum matching of a graph then the vertices not covered by the edges in the 

matching must be independent. Since the number of vertices covered by M is 2// it 

follows that a > n — 2/i. 

A bipartite graph is one whose vertex set can be divided into two independent 

subsets. For any bipartite graph G, it is known that a + /J = n (this is the Konig-

Egervary Theorem, see e.g. [70]). An efficient (that is, polynomial time) algorithm 

for finding a maximum matching (and hence the matching number (/,) has been known 

since at least the 1950's. Kuhn called it the Hungarian method (see, e.g., [9, pp. 82-

83]). It follows then that the independence number of a bipartite graph can be 

found in polynomial time. This is an important fact that the analysis of the MCIS 

algorithm, discussed in Chapter 3, depends on. It is a result of Edmonds that a 

maximum matching of a general graph can be found in polynomial time [70]. The 

author's own programs use another algorithm, one which finds a maximum flow on a 
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bipartite graph formed by adding a "source" vertex adjacent to all the vertices in one 

subset of the graph and a "sink" vertex adjacent to all of the vertices in the other 

subset (see [54, pp. 120-122]). An algorithm for producing a maximum independent 

set in a bipartite graph, rather than simply the independence number, is discussed 

below. 

The following theorem was conjectured by DeLaVina's Graffiti.pc program. It 

illustrates the fact that computers can often have better intuitions than humans. In 

particular, conjectures of Graffiti and Graffiti.pc often involve seemingly unrelated 

invariants. 

Theorem 2.1. (Graffiti.pc #113) For connected graphs with more than one vertex, 

H > Tfl' where g is the number of distinct degrees of the graph. 

Proof. Let G be a connected graph with more than one vertex. Let S = {v i, v2,... ,vg} 

be a set of of g vertices having distinct degrees dx < d2 ... < dg. 

Case I. Assume that g is even, and let k — | . Let V = {vk+i, Vk+2, • • •, Vg). Since 

dk+i > k + 1 and |V\ = k, Vk+\ must be adjacent to some vertex u\ not in V. Since 

dk+2 > k + 2 and \V U {«i} | = k + 1, Vk+2 must be adjacent to some vertex u2 not 

in V U {ui}. In general, since dk+i > k + i and \V U {«i,«2> • • • j ^ i - i l l — k + (i — 1), 

Vk+i must be adjacent to some vertex U{ not in V U {ui,u2,... ,Mi-i}. Thus, the set 

{(t>fc+i, Mi), (vk+2, ua), • • •, (vk+k, w*;)} is a set of k independent edges and m > | . 

Case II. When g is odd the proof is similar, but slightly more delicate. Assume 

g = 2k + l. So it must be shown that JJL > [^7^] = k + 1 Let V = {ffe+i, f̂c+2, • • •, vg}. 

Since it is assumed that G is finite and simple, Vk+\ must be adjacent to c4+i ver-

tices besides itself. Since rf^+i > k + 1, \V \ {vk+i}\ = k, and Vk+i is not adjacent 

to itself, it follows that Vk+\ must be adjacent to some vertex u\ not in V. Since 

dk+2 > k + 2, \V U {u\}\ = k + 2, and Vk+2 is not adjacent to itself, Vk+2 must 

be adjacent to some vertex u2 not in V U {«i}. In general, since dk+i > k + i, 

\V U {ui,U2, • • • ,Ui-i}\ = k + (i — 1), and Vk+i (1 < i < k = 1) is not adjacent to 
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itself, t>/j+j must be adjacent to some vertex u* not in V U {u\,U2, • • • , ^ i - i } - Thus, 

the set {(vk+i,ui), (vk+2,^2), • • •, (vk+(k+i),^fc+i)} is a set of k + 1 independent edges 

and m > fc + 1 = | . D 

A simple-minded, but computationally inefficient, approach for finding a maxi-

mum independent set in a graph (and, hence, its independence number a) is to list 

every subset of the vertex set of the graph, test each set to determine whether it is an 

independent set, and then choose one of these of maximum cardinality. For a graph 

G with n = n(G) = \V(G)\ vertices, 2n subsets would have to be checked. 

a . . * 

b \ / V 

f J^ ^\ f 

Figure 2.2: The sets X = {a, b, c, d, e, / } and Y — {a', U, d, d!', e', / ' } form a bipartition of 

the graph. 

Given a maximum matching of a bipartite graph, it will be shown how to find a 

maximum independent set of the graph. This is a key step in the algorithm (discussed 

in Section 3.1) for finding a critical independent set in a graph. Once the matching 

number fj, of a bipartite graph is known, the independence number a follows imme-

diately from the Konig-Egervary Theorem. Finding a maximum independent set is 

not difficult but less obvious. The following is the author's own algorithm, used in 

his programs, for finding a maximum independent set in a bipartite graph, given a 
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maximum matching, together with a proof of the correctness of this algorithm. 

Assume G is a bipartite graph with bipartition (X,Y), and maximum matching 

M. Assume furthermore that G is connected: if G is not connected then the following 

algorithm can be run on each component of G. For each edge xy G M. at most one of 

x or y can belong to a maximum independent set / of G. Since a(G) + A*(G) = n(G), 

and since there must be n — 2/x vertices which are not incident to any edge in M 

(they are unsaturated by the edges of M), it follows that I must consist of these 

unsaturated vertices together with exactly one vertex from each edge in M. 

Let V(M) be the vertices saturated by M. Let I0 = V(G) \ V(M) be the un-

saturated vertices. I0 is an independent set: if I0 were not independent, then M 

would not be maximal. Since X and Y are independent sets, each edge in M must 

be incident to one vertex in X and one in Y. If M is a perfect matching then there 

are no unsaturated vertices; moreover both X and Y are maximum independent sets. 

The main idea of the algorithm presented below is simple: start with the set J0. 

Find its neighbors J0. These cannot be in a maximum independent set. These are 

saturated by the matching M. Hence, the vertices l\ matched to Jo by M must be in 

the maximum independent set; continue this process. Find the new neighbors J\ of 

11 (that is, those which did not appear in the previously defined sets). These cannot 

be in a maximum independent set. These are saturated by the matching M. Hence, 

the vertices 1% matched to J\ by M must be in the maximum independent set; iterate 

this process until J; is empty. It must terminate for finite graphs. Any remaining 

vertices cannot be adjacent to any of the I's by construction. The remaining vertices 

are perfectly matched by edges in M. So X intersected with the remaining vertices 

must be an independent set containing one vertex from each of these remaining edges. 

These vertices together with the J's must form a maximum independent set of the 

graph. 

1. Leti = 0,ro = I0 = V0 = V\ V(M), V0 = V\ V0, and J0 - N(I0) \ V0. 
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2. If Ji = 0. Stop. 

3. i := i + 1. Let i* be the vertices matched to Jj_i under M. I[ = J ^ U 7j. 

VJ = Vj_i U Ji_i U Jj, K = V \ Vu and Jt = N(U) \ V{. Return to Step 2. 

After this algorithm stops, let I = I[ U (X n Vi). It will be shown that 7 is 

a maximum independent set of G. It follows from the preceding observations that 

what must be shown is that (1) 7 is independent, that (2) it contains all vertices not 

covered by M, and that (3) it contains exactly one vertex from each edge of M. Since 

To C / j C l is the set of uncovered vertices, (2) is immediate. 

In order to show (1) and (3), it will be shown that, following each iteration j , 7j is 

independent and that the edges in M incident to vertices in 7j cover all the vertices 

in Vi \ Vi-i. This means that these vertices are perfectly matched by M and, thus, 

that the vertices in G[Vj] are perfectly matched by M. Since X D V3; is a maximal 

independent set in G[Vj] and since, by construction, following the termination of the 

algorithm, no vertex in V- is adjacent to any vertex in Vj, it follows that I = IlU(XnVi) 

is a maximum independent set in G. 

I0 = Vo is independent by construction. The vertices in J0
 a r e uncovered by M 

and must be in every independent set. Jo is the set of neighbors of Jo- These vertices 

cannot be in any independent set. I\ is the set of vertices matched to Jo under M. 

Vi = Vo U Jo U I\. Since no vertex in J0 is contained in any maximum independent 

set and since a maximum independent set must contain one vertex from each edge of 

M, it follows that h is independent, that I\ must be contained in every maximum 

independent set of G, that I{ = I0 U JL is an independent set, and that I[ must be 

contained in every maximum independent set of G. Also note that, for every edge in 

M that is incident to any vertex in V\, that edge is incident to a vertex in I[, This is 

by construction: it was true for every edge in M incident to a vertex in Vo = Jo, and 

the only edges in M incident to vertices in V\ \ VQ are incident to Ix C Vx \ V0. 

Assume that after j iterations of this algorithm that /'• is independent, contained 
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in every maximum independent set of G and that each edge in M incident to any 

vertex in Vj is incident to a vertex in I',. If Jj = 0, the algorithm terminates and 

we have shown what we set out to show. Otherwise, the algorithm continues. 7J + 1 

is the set of vertices matched to Jj under M. Vj+i = Vj U Jj U Ij+i. Since no 

vertex in Jj is contained in any maximum independent set and since a maximum 

independent set must contain one vertex from each edge of M, it follows that Ij+\ 

is independent, that ij+i must be contained in every maximum independent set of 

G, that I'j+1 = Ij U Ij+i is an independent set, and that I'j+1 must be contained in 

every maximum independent set of G. Also note that, for every edge in M that is 

incident to any vertex in Vj+i, that edge is incident to a vertex in Ij+i- This is by 

construction: it was true for every edge in M incident to a vertex in Vj, and the only 

edges in M incident to vertices in Vj+i \ Vj are incident to Ij+i C Vj+i \ Vj. Thus, 

truth of the claim holds for each step of the algorithm, proving the claim above. 

For general graphs, the fundamental idea used in the fastest algorithms for finding 

maximum independent sets is due to Tarjan and Trojanowski [80]. Their idea is that, 

for a graph G and any vertex v € V(G), either v belongs to some maximum indepen-

dent set of G or it does not. Then the problem of finding a maximum independent set 

can be divided into two smaller subproblems. If v is in some maximum independent 

set, then it is enough to find a maximum independent set in G — v — N(v) and adding 

v to it; since G — v — N(v) does not contain any neighbor of v, v cannot be adjacent 

to any vertex in any (independent) set of G — v — N(v). If v is not in any maximum 

independent set then it is enough to find a maximum independent set in G — v. It 

also leads to a recursive solution to the problem of finding a maximum independent 

set. This leads to a solution of the problem of finding the independence number 

of G which can be formalized as follows: For any graph G and vertex v € V(G), 

a{G) = max{a(G -v),l + a(G - v - N(v)). 

An additional idea that can reduce branching in the recursion tree resulting from 
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Figure 2.3: The three pendants a, b, and c can be removed and included in any maximum 

independent set. 

the preceding procedure is to identify pendant vertices (vertices adjacent to exactly 

one other). If v is a pendant vertex of a graph G, then it can be included in a 

maximum independent set of G. If J is a maximum independent set of G, w is the 

unique vertex adjacent to v, and w & I, then I \ {w} U {v} is an independent set 

with the same cardinality. Thus, if G has a pendant vertex v, v can be included 

in any maximum independent set, and v and its neighbor can be removed without 

introducing any new branching: that is, a(G) = 1 + a(G — v — N(v)), and only the 

single subgraph G — v — N(v) need be considered, rather than two subgraphs. 

In the following section, a slight modification of the Tarjan-Trojanowski algo-

rithm for finding a maximum independent set in a recursive graph is discussed. If 

a connected graph has adjacent pendant vertices then the graph must be the com-

plete graph K2 on two vertices. It clearly follows from the discussion above that 

for any connected graph G other than K2, having set P of pendant vertices, that 

a(G) = \P\ + a(G — P — N(P)). In Chapter 3 a generalization of this idea is dis-

cussed. 
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2.2 Chemical Graph Theory and Fullerenes 

Graphs were originally used to represent the structures of molecules in the 18th cen-

tury. In the 19t/l century, graphs were used to represent their bonding structure, that 

is with an edge representing a chemical bond between two atoms. These structural 

drawings were called graphical notation. As mentioned in the Introduction, Sylvester 

initiated the use of the word graph as a shortening of graphical notation. Crum Brown 

may have been the first to use graphs representing molecular bonding structure as 

they are now used in chemistry. Two molecules with the same chemical composi-

tion can have different chemical properties: the molecules may have different bonding 

structures. They are different isomers. The problem of isomerism was identified in 

the 19"1 century and led to work on counting numbers of isomers, most famously 

Cayley's work in counting the numbers of alkane isomers [5, 78]. This marks the be-

ginning of chemical graph theory. Graphs were used not only to represent molecular 

structure, but now theorems about graphs were conjectured and proved, motivated 

by chemical problems. 

Isomer enumeration is one of four key areas that Rouvray [78] identifies in the 

development of chemical graph theory. Another is the development of topological 

indices. What chemists call "topological indices" are the same as what graph theorists 

call "invariants." The aims in chemical graph theory are to find indices or invariants 

that correlate with chemical properties such as boiling points, and also indices that 

distinguish between isomers, indices that give different values for the molecules in an 

isomer class. Such an index is said to be non-degenerate. In 1947, Wiener defined an 

index, now called the Wiener index, which was designed to measure, in some sense, 

the "connectivity" of a molecular graph and showed that it correlated with several 

physical properties [78]. Wiener is taken to have initiated this kind of investigation. 

Another well-known widely-studied index is the Randic index, introduced by Randic 

in 1975, designed to measure, in some sense, the "branching-ness" of a molecular 
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graph. 

The historical development of these and other topological indices is also discussed 

in [4]. The independence number of the graph of a molecule corresponds to the largest 

set of atoms of the molecule, no pair of which are bonded. In their history Balaban 

and Ivanciuc do not give any examples of the use of the independence number a 

as a topological index. They do give an example of the use of a related invariant: 

Merrifield and Simmons investigated the number a of independent sets in a graph. 

In [71] they give a recursive formula (similar to Tarjan and Trojanowski's recursive 

formula for a) for computing a, and show that for the lower alkanes this invariant 

correlates both with the alkane heats of formation and their boiling points. 

The use of the independence number as a topological index in chemical graph 

theory seems to have been initiated by a conjecture of Fajtlowicz's Graffiti program. 

Fajtlowicz and this author showed (in [33]) that minimizing this invariant appears 

to be a useful selector in identifying stable fullerene isomers. The experimentally 

characterized isomers with 60, 70 and 76 atoms uniquely minimize this number among 

the classes of possible structures with, respectively, 60, 70 and 76 atoms. Other 

experimentally characterized isomers also rank extremely low with respect to this 

invariant. These findings were initiated by a conjecture of the computer program 

Graffiti. 

Fullerenes with a wide range of numbers of carbon atoms have been produced 

in experiment. Isomers with 60, 70, 76, 78, and 84 atoms have been produced in 

sufficient quantity to be characterized by NMR spectroscopy. The term "stable" is 

ambiguous, is used to refer alternately to thermodynamic and kinetic stability and, 

less formally, it is applied to those fullerenes that have actually been observed. These 

uses of the term are presumably related. For the present purposes fullerenes that 

have been produced in bulk quantity (or have been isolated) are referred to as stable 

fullerenes. These include at least C 6 0 (4 ) , C70(D5h), C7e(D2), C78(D3), C78(C2v) (2 
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kinds), Csi{D2) and C84(D2d) [H]- (In the numbering scheme of [39] these are C60 : 1, 

C70 : 1) C76 : 1) CTS '• 1, C78 : 2, C78 : 3, C84 : 22 and C§4 : 23.) 

The problem for chemists is two-fold: characterizing those fullerenes that have 

been produced in experiment and predicting, for a given isomer class, which fullerenes 

are most likely to appear in future experiments. In each instance, the number of 

mathematically possible structures satisfying the fullerene hypothesis—that their 

carbon framework forms a trivalent polyhedron whose faces are either hexagons or 

pentagons—is enormous. Various rules-of-thumb have been proposed for reducing 

these numbers of possible isomers; the IPR hypothesis—that stable fullerenes have 

pentagonal faces which are isolated—is the most commonly used. Other rules-of-

thumb include the maximum value of HOMO-LUMO [69], Raghavachari's uniform 

hexagon environments criteria [74], and Fowler's qualitative version of the same, the 

second moment of the hexagon neighbor signature [39]. The stability-independence 

hypothesis is that stable fullerenes tend to minimize their independence numbers. 

Statistical evidence for the utility of this new rule-of-thumb was presented in [33], 

and is reproduced in Table 2.1. Since then we have learned that known facts about 

benzenoid stability support this rule-of-thumb. Benzenoids are finite regions of the 

infinite hexagonal lattice having carbon molecules at the vertices of this lattice. On 

one theory of fullerene formation, fullerenes are formed by folding up finite graphite 

sheets, that is, by folding up benzenoids. Stable benzenoids are known to have Kekule 

structures; mathematically, this means that their graphs have perfect matchings. 

Since benzenoids are alternant hydrocarbons (mathematically, that their graphs are 

bipartite), this implies that stable benzenoids with a given number of vertices n are 

ones that minimize their independence numbers. This is an important fact that has 

been overlooked, for instance in [40], which claims to refute the stability-independence 

hypothesis but which does not propose any better predictor of fullerene stability. 

The energy predicted by the Hiickel model is another predictor of fullerene sta-
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Atoms 

60 

70 

76 

78 

84 

Isomer 

C60:l (4) 

C7o:l (D5h) 

C76:l (D2) 

C78:l (D3) 

C78:3 (C2V) 

Cf8:2 {Civ) 

C84:22 (D2) 

C84:23 (D2d) 

# of Isomers 

1812 

8149 

19151 

24109 

51592 

Independence Number 

24 

29 

32 

33 

34 

33 

36 

36 

Rank 

1 

1 

1 

1(3) 

2 

1(3) 

1(17) 

1(17) 

Max 

28 

33 

36 

37 

40 

Min 

24 

29 

32 

33 

36 

T a b l e 2 . 1 : Independence Number da ta for experimentally produced fullerenes. Rank is by small-

est value of Independence Number. Max and Min are the largest and smallest values within the 

corresponding class. The numbers in parentheses record the number of isomers that share the 

corresponding rank or value. 

bility: stable fullerenes should minimize their energy. The relative Hiickel energy 

(the relative molecular energy predicted by the Hiickel theory) is a purely topolog-

ical invariant. It is shown here that this invariant compares unfavorably with the 

independence number as a predictor of fullerene stability. While the Hiickel model is 

a simplification that does not take into consideration pi-electron interactions, Gut-

man and Polansky note that "the HMO total pz-electron energy is in a perfect linear 

correlation with the kinetic energy of pi-electrons as calculated by rather accurate 

(STO-3G) ab initio methods" [47, p. 136]. The ordering of the molecules in an isomer 

class with respect to this energy can be found by computing the following topological 

invariant Eh, where Ai > A2 > . . . > A„ are the eigenvalues of the n-atom molecule. 

In the case where n is even, 
XL 
2 

Eh = 2_^ ^ 
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Atoms 

60 

70 

76 

78 

84 

Isomer 

C60:l (//,) 

Cm:l (D5h) 

C76:l (D2) 

C78:l (D3) 

C*78:3 \C2V) 

6*78:2 (C2v) 

CSA:22 (D2) 

C84:23 (D2d) 

# of Isomers 

1812 

8149 

19151 

24109 

51592 

Hiickel Energy 

93.1616 

108.8136 

118.3267 

121.5358 

121.5909 

121.5576 

130.9796 

131.0442 

Rank 

24 

1 

21 

282 

2289 

657 

564 

5356 

Min 

93.0745 

108.8136 

118.2711 

121.3839 

130.7431 

Max 

93.4768 

109.2523 

118.6952 

121.8600 

131.3079 

Table 2.2: Hiickel energy data for experimentally produced fullerenes. Rank is by smallest value 

of Hiickel energy. Min and Max are the smallest and largest values within the corresponding class. 

and if n is odd, 
Tl+l 

2 

Eh = 2_^ "^ 
i=l 

The computed rankings are presented in Table 2.2. 

Computing the independence number of a graph is, in general, a computationally 

intractable problem. It is known that computing whether the independence number 

of a cubic planar graph is less than a given number is NP-complete [42], it is not 

known whether this is the case for fullerenes, which are cubic and planar but which 

have additional structure. For the relatively low-order fullerene IPRs, it is often 

easy to compute the independence number. An upper bound for this number may be 

computed by noting that no more than two vertices of any pentagonal face can belong 

to a maximum independent set—so the pentagonal faces may contribute no more than 

24 vertices to a maximum independent set. Removing the pentagonal faces, it may 

then be easy to compute the independence number of the remaining subgraph. The 

independence number of the fullerene can be no more than 24 plus the sum of the 
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independence numbers for these components. In Figure 2.1, the highlighted set of 

vertices demonstrated that a 24 element independent set of vertices exists for Ceo and 

thus that the independence number is 24. 

Ramras proved that, for any planar cubic graph whose vertices can be covered 

by disjoint pentagons the independence number is ^f [75]. Thus, the independence 

number for the graph of Buckminsterfullerene is 24—which Ramras showed, using 

this graph as an illustration even before the molecule had ever been isolated. One 

underlying idea is that an upper bound for the independence number of a graph is 

the sum of the independence numbers of any collection of disjoint induced subgraphs 

of a graph that contain all of the vertices of that graph. This idea can be used to 

find the independence numbers for each of the eight stable isomers highlighted above 

[41]. 

In the case of Ci0o:321(T) (Fig. 2.4), the vertices not belonging to the pentagons 

form a connected subgraph in the shape of a "peace sign"—there is an outer cycle, 

together with a center point from which three paths extend and meet this cycle. It is 

not difficult to show that the independence number of this subgraph is 19. Thus, the 

independence number of the graph of this fullerene is no more than 19 + 24 = 43. It 

is also not difficult to find an independent set which realizes this upper bound. 

Given that our graphs represent fullerenes and thus are cubic (or trivalent, that 

is, that all vertices have degree three), after an initial vertex v is chosen and the sub-

graphs formed by removing it and removing both it and its neighbors are considered, 

these subgraphs as well as every subsequent subgraph considered in the recursive algo-

rithm must contain an isolated vertex, a pendant vertex, or one joined to exactly two 

others (a vertex of degree two). After the first step of the algorithm, and the removal 

and inclusion of isolated and pendant vertices in a largest independent set, either the 

algorithm terminates or the remaining non-empty subgraphs contain a vertex w of 

degree two. In the latter case, consider a neighbor u of w. A modification of the stan-
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Figure 2.4: IP isomer Cioo:321(T) with pentagons highlighted. At most two vertices from 

each pentagon can be included in any maximum independent set: at most 24 of vertices 

covered by the pentagons can be included in a maximum independent set. The graph 

induced by the remaining vertices has independence number 19. Thus the independence 

number of this fullerene is no more than 24+19=43. 
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dard algorithm is to reduce the problem to the problem of finding the independence 

number of the graph formed by removing u and the one formed by removing u and 

its neighbors. In the first of these graphs, w is a pendant vertex and can be removed 

immediately. The size of the problem is reduced by two vertices instead of one. This 

algorithm made it possible to compute independence numbers of fullerenes with up 

to 100 atoms in a reasonable amount of time. The algorithm follows. 

1. Let v be any vertex of G. Find a(G — v) and a(G — v — N(v)). Then a(G) — 

max{a(G -v),l + a(G - v - N(v)). 

2. If G is the empty graph, stop. 

3. If G has an isolated vertex v, find a(G — v). a{G) = 1 + a(G — v). 

4. If G has a pendant vertex v, find a(G — v — N(v)). a(G) — l + a(G — v — N(v)). 

Return to Step 2. 

5. If G has a vertex v of degree two, and w is a neighbor of v, find a(G — w) and 

a(G — w — N(w)). Then a(G) =max{a(G — w),l +a(G — w —N(w)). Return 

to Step 2. 

As mentioned the only difference between this algorithm and the standard one is 

to search for a degree two vertex in the branching step (Step 5): for a connected cubic 

graph, after the initial branching step, each subgraph is guaranteed to have a vertex 

of degree zero, one or two. The independence numbers for fullerenes were computed 

both with the unmodified recursive algorithm and the cubic graph modification dis-

cussed in Section 2.1. In all cases the computations agreed. In empirical testing on 

fullerenes the modified algorithm was roughly twice as fast as the basic recursive algo-

rithm. The computed independence numbers were checked against a large number of 

special and common graphs whose independence numbers are known, including Paley 

graphs up to 200 vertices, PR[n] graphs (defined in [30]) up to 200 vertices; and they 
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agree with the independence numbers for the stable fullerenes calculated by hand, as 

outlined above. Furthermore, that the isomers we have identified as minimizing their 

independence numbers in a given isomer class do minimize their independence num-

bers was checked in two ways. Firstly, the program implementing the algorithm above 

produced sets of vertices of cardinality corresponding to the computed independence 

number—and the independence of these vertices in the graph of the corresponding 

isomer was confirmed. Secondly, this was checked by using other algorithms—either 

a greedy algorithm or the unmodified recursive algorithm—to confirm that the other 

isomers had larger independence numbers. These computations also agree with the 

original computations of this author, utilizing the unmodified independence algo-

rithm, whose results were confirmed for selected fullerenes by programs of Brendan 

McKay and Wendy Myrvold. 

2.3 Cut Vertices, the Radius, and Independence 

Bounds 

In this section upper and lower bounds for the independence number in terms of the 

number of cut vertices of a graph are proved. A vertex is a cut vertex if its removal 

from the graph (together with the edges incident to it) results in an increase in the 

number of components; that is, more formally, v is a cut vertex of G if the number 

of components of G — v is greater than the number of components of G. Fajtlowicz's 

Graffiti program conjectured that ^ 4- k < a, where C is the number of cut vertices, 

k is the number of components, and a is the independence number. This conjecture 

led to the following result: 

C C 1 
_ + l < a < n - - - - . 

n is the number of vertices of the graph. The proof of the lower bound is originally 

due to Greg Henry and Ryan Pepper and first appears in Pepper's dissertation [73]. 
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Graffiti's original conjecture follows immediately from this lower bound. A new, short 

and illuminating proof is given here. The proof of the upper bound is due to Fajtlowicz 

and independently to this author together with Pepper; the proof given here is new 

and used in giving a characterization of when the cut vertices upper bound equals 

the independence number. 

Figure 2.5: Cut vertices. The vertices e, x, and y are cut vertices. Removing any one of 

them will result in a graph with more than one component. 

It is of theoretical and possibly practical interest to characterize those graphs 

where the equality of a bound holds. Several proofs of Graffiti's early conjecture that 

the radius of a graph is no more than its independence number have been found. 

The eccentricity of a vertex of a connected graph is the maximum of the distances 

between that vertex and each of the other vertices of the graph. The radius of a 

connected graph is the minimum eccentricity of any of its vertices. Characterizing 

those connected graphs where the radius r of the graph is equal to its independence 

number a was mentioned as an open problem in [35];a solution is given below. 

Graffiti made a conjecture which implied that graphs where r = a have Hamilto-

nian paths. A graph has a Hamiltonian path if there is a path which includes every 

vertex. This was known for graphs where the radius is no more than three: the case 

where r = 2 is a consequence of a theorem of Chvatal and Erdos [12], where the case 
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when r = 3 was proved by Fajtlowicz (in an unpublished note). The general case 

was proved by DeLaVina, Pepper and Waller in [17]. This author conjectured that 

if r = a as well as contained a 2r-cycle then the graph is Hamiltonian. A graph is 

Hamiltonian if it contains a spanning cycle. The proof of this conjecture, building on 

the characterization of those graphs where r = a, for the case where r > 4, is below. 

2.3.1 Cut Vertex Lower Bound 

The main idea of the following new proof of the cut vertex lower bound is that, 

starting from any non-cut vertex v, and traveling to any cut-vertex, there must be at 

least one vertex on the "other side" of this cut-vertex. For each cut-vertex choose one 

of these. For the set of cut vertices at an even distance from v, this set of vertices on 

the other side will be independent; similarly, this will be true for the set of vertices 

at an odd distance from v. One of these sets will be at least half the size of the set 

of cut vertices. Adding v to this set gives an independent set at least as large as the 

lower bound. 

Theorem 2.2. (Henry and Pepper) If G is a connected graph then a > f + 1. 

Let a connector be a vertex which is not a cut-vertex. Let C = C(G) be the 

number of cut-vertices of a graph G. Every graph contains a connector. Every 

connected graph with more than one vertex contains at least two connectors: if v 

and w are vertices at maximum distance from each other in a graph, then they are 

both connectors. We say vertices v and u are separated by w if vertices v and u are 

in different components of G — w. 

If v is a vertex of a connected graph G, and w is any vertex, let 

Dv(w) = {u G N(w)\u and v are separated by w and d(v, u) = d(v, w) + 1}. 

If w is a cut vertex, then the set Dv(w) contains the neighbors u of w where every 

path from vtou must pass through w. (These sets were originally defined as singleton 
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sets, each containing a choice of a vertex from the present sets. Fajtlowicz suggested 

that consideration of the present sets were of more general interest). Let GVjW be the 

graph induced on Dv(w). So Gv>w = G[Dv(w)\. 

Ov = {Dv(w)\w is a cut vertex of G and d(v, w) is odd } 

£v — {Dv(w)\w is a cut vertex of G and d(v,w) is even } 

Note that the number C of cut vertices of G equals |Ow| + |£„|, and that max{ \Ov\, \£v\} > 
c 
2 • 

Having described the necessary preliminaries, the new proof can now be given: 

Proof. Let v be a connector. For each cut vertex w, let w' be a vertex in Dv(w). 

Let 0'v be a choice of a vertex from each set in Ov. 0'v is an independent set and 

10'v\ = \Ov\. Similarly let E'v be a choice of a vertex from each set in £v. E'v is an 

independent set and \E'V\ = \£v\. No element in 0'v or E'v is adjacent to v. 

Thus, 

C 
a > max{\0'v U {v}\, \E'V U {v}\} = max{\Ov\ + 1, \£v\ + 1} > - + 1. 

• 

2.3.2 Cut Vertex Upper Bound & Characterization of Equal-

ity 

The upper bound was proved independently by several different people. A new proof, 

due to this author and presented below, begins by noting some necessary facts and 

drawing out their consequences. These ideas are then used in characterizing those 

graphs where the cut vertices upper bound equals the independence number of the 

graph. 
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Lemma 2.3. For every tree with at least two vertices, 

C 1 
a < n . 

2 2 

Proof. The only tree in which two pendant vertices are adjacent is the path on two 

vertices—for which the theorem holds. Assume T is a tree with more than two 

vertices. Let / be a maximum independent set containing all pendant vertices. Let 

P be the set of pendant vertices and let p — \P\. Note that any vertex in I\P has 

degree two or more. Thus, the number e' of edges incident to vertices in / is at least 

2 | /yP | + |-P| = 2(a -p)+p = 2a-p. 

Since, for any tree, p = n — C, 

n - l = e>e'>2a-p = 2a-n + C. 

Rearranging gives the desired inequality. • 

Theorem 2.4. For every connected graph with at least two vertices, 

<r C 1 a < n . 
2 2 

Proof. The theorem is true for the path on two vertices. Let G be a connected 

simple graph with more than two vertices. Let T be any spanning tree of G. Since, 

n(G) = n(T), C(G) <C(T), and a(G) < a(T), by the previous lemma we have 

n{G)-^-\>n{T)-^-\>a{T)>a(G). 

• 
Fajtlowicz found another proof of the upper bound by noting its equivalence to 

the following conjecture of Graffiti: 

Conjecture 2.5. For any connected graph, L > n + 1 — 2/x. 

41 



Here, L is the maximum number of pendants of any spanning tree of G and [i is 

the matching number of G, the maximum cardinality of a set of non-incident edges 

of G. Fajtlowicz's proof of this conjecture can be found in Ermelinda DeLaVina's list 

"Written on the Wall II" of conjectures of Graffiti.1 

Equality holds for, and only for, odd trees. 

Definition 2.6. A branching point in a tree is a vertex of degree greater than or 

equal to three. An odd tree is an odd path (a path with an odd number of vertices) or 

a non-path tree where the distance from any branching point to each pendant vertex 

is odd. 

/ c d e \ 

9 

Figure 2.6: An odd tree. The branching points are c and e. The pendant vertices axe a, 

b, f and g. The distance from any branching point to any pendant vertex is odd. 

Clearly, the distance between any two pendant vertices in an odd tree is even. 

Lemma 2.7. For every tree T, a — n — y — \ if, and only if, T is an odd tree. 

Proof. Suppose the theorem is true for all trees with no more than k vertices. Let T 

be a tree with k + 1 vertices. The theorem is true for paths, so it will be assumed 

that T contains a branching point. Let u b e a pendant vertex such that the distance 

from v to its nearest branching point w is maximized. 
1This list can be found on the WWW at: http://cms.dt.uh.edu/faculty/delavinae/research/wowII/ 
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If v and w are adjacent, then every pendant must be adjacent to a branching 

point. Since any tree has more pendant vertices than branching points, there must 

be a branching point adjacent to two or more pendant vertices. Assume that w is such 

a branching point. Let V = T - v. In this case, C(V) = C(T), a(T') = a(T) - 1, 

and n(T) = n(T) - 1 = k. 

Suppose that, a(T) = n(T) ^ — \. By substitution, it follows that, a(T') = 

n(T") y ^ - | and, by the inductive assumption, that T" is an odd tree. Since T" 

is an odd tree, and T is formed by adding a pendant vertex to a branching point that 

is adjacent to a pendant vertex in T", T is also an odd tree. 

Now suppose that T is an odd tree. Then T" is also an odd tree, since T" was formed 

by removing a pendant vertex adjacent to a branching point of T. By assumption, 

<y.{T') = n(T') -^-^ — | , and the result follows by substitution. 

Now consider the case where v and w are not adjacent. Let v' be the unique 

(degree two) neighbor of v. Let V — T — {v,v'}. In this case, a(T') = a(T) — 1, 

n(T') = n(T) — 2 and C(T') = C(T) — 1, in the case where v' is adjacent to w or, 

otherwise, C(T') = C(T) - 2. 

Suppose that a(T) = n ( r ) - ^ - \. If C ( r ' ) = C{T) - 1, by substitution it 

follows that a{T) = n(T') - ^ 1 . But, by Theorem 2.4, a(T') < n(7") - ^p - | . 

So C(T") = C(T) - 2 , and a(V) = n(T) - ^ - \. By the inductive assumption, T 

is an odd tree and, since T was formed by removing a pendant vertex and its degree 

two neighbor v' from T, T is an odd tree. 

Now suppose that T is an odd tree. Since the distance between v and w is odd, 

and v is not adjacent to w, it follows that T" is an odd tree and that C(T') = C(T) — 2. 

By the inductive assumption, a(T') = n(T") y-^ — | . The desired result follows 

immediately by substitution. • 

Theorem 2.8. For every connected graph G, a = n — y — \ if, and only if, G is an 

odd tree. 
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Proof. Assume the theorem is true for graphs with no more than k vertices. Let G 

be a connected graph with k + l vertices. One direction is an immediate consequence 

of Lemma 2.7. Assume then that a(G) = n(G) ^ — | . 

Let T be a spanning tree of G. Since a(G) < a(T), n(G) = n(T), and C(G) < 

C(T), 

«(G) < «(T) < n(r) - 522 ^ I < n(G) - £ ^ - i. 

The second inequality follows from Theorem 2.4. Since the first and last terms are 

assumed to be equal, all the terms are equal and a(G) = a(T) and C(G) — C(T). 

Since every cut-vertex in G is a cut-vertex in T, it follows that the sets of cut-vertices 

in G and T are identical. Finally, since a(T) = n(T) ^ — | , Lemma 2.7 implies 

that T is an odd tree. This argument also shows that any spanning tree of T must 

be an odd tree. 

If G is a path, then the result follows from Lemma 2.7. Otherwise, there is a 

spanning tree of G with a branching point. Assume T has a branching point. Since 

there are more pendants than branching points in any tree, there is a branching point 

v and pendant vertices u and w, such that the unique (odd-length) paths from u to 

v and from v to w contain no branching points. 

There are three cases to consider: (1) the case where both u and w are adjacent 

to v, (2) the case where both u and w are adjacent to degree-two neighbors, and (3) 

the case where exactly one of u or w is adjacent to a degree-two neighbor. 

liu is adjacent to v in T, let G' = G — u. Then C(G') = C(G). If u is not adjacent 

to v, then there is a unique degree-two neighbor of u in T. Call this vertex v!. In this 

case let G' = G — {u, u'}. Here, C(G') = C(G) — 2. Because u is in every maximum 

independent set of T and a(G) — a(T), u is in every maximum independent set of G. 

So, in either case, a(G') = a(G) - 1, and it follows that a{G') = n(G') - ^ p - \. 

The inductive hypothesis implies that G' is an odd tree. Note that w is a pendant 

in G'. Thus the only vertices w can be adjacent to in G are its unique neighbor in 

44 



T, u and, if u has a degree-two neighbor in T, v!. Arguing symmetrically, the only 

vertices that u can be adjacent to in G are its unique neighbor in T, w and, if w has 

a degree-two neighbor in T, that neighbor (call it w'). 

In all three cases there can be no edge in G between u and w. If u and w were 

adjacent, it is easy to modify T to form a spanning tree of G which is not an odd tree, 

contradicting the fact that any spanning tree of T is an odd tree. In case (2) there 

cannot be edges in G between u and w' or between w and u' for the same reason. In 

case (3), assume that u is adjacent in G to v, that w is adjacent to a degree-two vertex 

w' and that u is adjacent to w'. Then there is at least one degree-two vertex on the 

path between w' and v. this vertex is a cut vertex in T but not in G, contradicting 

the fact that the set of cut vertices is the same in both graphs, proving the result. 

Thus, G has no more edges than its spanning tree T, is identical to it and is an 

odd tree, proving the result. 

• 

2.3.3 Characterizing when Independence equals Radius 

The eccentricity of a vertex of a connected graph is the maximum distance from the 

vertex to any other vertex of the graph. The radius of the graph is the minimum 

eccentricity of the vertices of the graph. Let r = r{G) be the radius. The computer 

program Graffiti conjectured [30] that, for any connected graph, a > r. This con-

jecture follows immediately from the Induced Path Theorem, whose proof in a paper 

of Erdos, Saks and Sos, [19, Thm. 2.1] is credited to Fan Chung. In [22] Fajtlowicz 

mentions four different proofs of this conjecture as of 1988. Fajtlowicz and Waller 

provide one proof in [35] and remark that characterizing the case of equality remained 

open. 

An r-ciliate is a cycle with 1q (q > 1) vertices and appended to each of these 

vertices is a path with r — q vertices. They are denoted C2qtr-q (see Figure 2.7). It 

45 



is easy to see that r-ciliates are bipartite and that a{C2qtr-q) — 2 = qr — q2 + q. 

In the case where q — 1, the cycle is degenerate and identical to the path on two 

vertices. Clearly, r > q. In the extreme cases, where q = 1 and r = q, the r-ciliate is 

a path or a cycle, respectively. 

Figure 2.7: r-ciliates. The graphs are, from left to right, C2xi,2-i = C2,i, C2x3,3-3 = C§<Q, 

C*2x2,4-2 = C4,2- These graphs are radius critical. If a vertex is removed in any of these 

graphs that does not disconnect the graph, the radius will decrease. 

A connected graph G is radius-critical if v is any non-cut vertex, then G — v, 

the subgraph formed by deleting v and the edges incident to it, has radius r — 1. 

Fajtlowicz proved that a graph is radius critical if, and only if, it is a ciliate [22]. 

The radius of an r-ciliate is r. It follows that every connected graph with radius r 

contains an induced r-ciliate. Fajtlowicz noted that a connected graph with radius 

r, independence number a, with a = r, necessarily contains an induced path with 

2r vertices (a 2r-path) or an induced cycle with 2r vertices (a 2r-cycle) [22]. This 

result is the foundation for the characterization of those connected graphs whose 

independence number equals its radius. 

If G is a connected graph with radius r, a radius-critical graph having radius r 

can be found by removing vertices until it is no longer possible to remove a vertex 

without either disconnecting the graph or without decreasing its radius: at some point 
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all remaining vertices are either cut vertices or will result in a decrease of the radius. 

By Fajtlowicz's theorem, this process yields an r-ciliate. Let R be the set of vertices 

of an induced r-ciliate. Let R' = V(G) \ R. Since r-ciliates are bipartite, let (B, W) 

be the bipartition of the vertices (so R = B U W, and \B\ = \W\); a vertex in B is 

black, while a vertex in W is white. 

The following notation is used here: the vertex set of a graph G is V(G), the set 

of neighbors of a set S C V(G) is N(S), the set of neighbors of S that are in set T is 

NT(S) = N(S) n T, and the graph induced on a set S C V(G) is G[3}. All graphs 

are assumed to be finite and simple. 

The following characterization focuses on properties of sets of independent "exter-

nal" vertices. Another characterization, long in progress, due to DeLaVina, Pepper, 

Waller and this author, focusing on the relationships between individual external 

vertices, has just been completed. 

Theorem 2.9. IfG is a connected graph, with independence number a = a(G), radius 

r = r(G), where R is the vertex set of an induced r-ciliate, with bipartition (B, W) of 

G[R] (vertices in B are black and vertices in W are white,), and R' = V(G)\R then, 

a = rif, and only if, G satisfies the following conditions: 

1. G contains an induced 2r-path or an induced 2r-cycle. 

2. Every independent set I1 in G[R'] has at least \I'\ white neighbors and at least 

\I'\ black neighbors (and \NR(I')\ > 2\I'\). 

3. For every independent set I' of G[R'\, with |A^R( / ' ) | = 2\I'\ + k', the number of 

odd components in G[R \ N(I')] is no more than k'. 

Proof Assume that G is a connected graph G, with independence number a = a(G), 

and radius r = r(G), where R is the vertex set of an induced r-ciliate and R' = 

V(G)\R. 
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We first show that, if a(G) = r(G), then conditions 1, 2, and 3 necessarily follow. 

That G must satisfy condition 1 is an observation of Fajtlowicz. Indeed, every 

graph has an induced r-ciliate of the form C29>r— q. It is easy to see that r-ciliates are 

bipartite and that a(C2qir-q) = qr — q2 + q. So, a(G) > qr — q2 + q. qr — q2 4- q = r 

if, and only if, q — 1 or q = r. In the first case, G has an induced 2r-path, while in 

the second case, G has an induced 2r-cycle. 

Suppose I' is an independent set of G\R']. Suppose, that I' has fewer than \I'\ 

white neighbors, that is, \N{I') C\W\ < \I'\. Let Nw = N(I') n W. Let / = 

(W \ Nw) U / ' . Then I is an independent set and a(G) > \I\ = \W\ - \NW\ + \I'\ > 

\W\ — \Nw\ + \Nw\ = \W\ = r(G) which contradicts the assumption that a(G) = r(G). 

Analogous reasoning shows that I' has at least \I'\ black neighbors. So, G must also 

satisfy condition 2. 

It is worth noting that condition 2 implies that every vertex v E R' is adjacent to 

at least one black vertex in R and at least one white one. 

Suppose I' is an independent set in G[R']. By condition 2, \NR(I')\ = 2\I'\ + k', 

for some integer k' > 0. (If / ' = 0, then k' = 0.) So, \R \ N(I')\ = \R\ - 2 | / ' | - k' = 

2r - 2|J'| - k'. If G[R) is a 2r-path, then the components of G[R \ N(I')} are paths. 

If G[R] is a 2r-cycle then either NR(F) = 0 or NR(I') ^ 0. If NR(I') = 0 then / ' = 0, 

and a{G) = a(G[R}) = r(G). If NR(I') ^ 0 then the components of G[R\N(I')} are 

paths. If if is a graph which is a union of paths, k of which have an odd number of 

vertices, then a(H) = ' ^ ^ +k. Let k be the number of components of G[R\N(I')] 

with an odd number of vertices. 

Suppose the number A; of odd paths in G[R \ N(I')] is greater than k' (that is 

k>k'). Then, 

aiG[R N N(m = \K\»m\-k+k > E13DUL+v 

= \R\ - | ^ ( / ' ) | - k ' + k , = 2r- (2|/-| + f) - V + y = f _ | r | + k, 
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Let J be a maximum independent set of G[R \ N(I')]. So | J\ = a(G[R \ N(I')]) > 

r - \I'\ + k' >r- \I'\. Now, J U V is independent, so a(G) > | J U J'| = | J\ + \I'\ > 

(r — |I'D + |/'I = r. This contradicts the assumption that a(G) = r{G). It then 

follows that k < k', and condition 3 is satisfied. 

We now show that, if conditions 1, 2 and 3 are satisfied, then ot(G) = r(G). 

By condition 1, G contains an induced 2r-path or an induced 2r-cycle. Let R be 

the vertex set of this induced r-ciliate, with bipartition (B, W) and R' = V(G) \ R. 

Let / be a maximum independent set of G and I' = I f] R'. Condition 2 implies 

that \NR(I')\ = 2\I'\ + k', for some k' > 0. (If/' = 0, then k' = 0.) So, \R\N(I')\ = 

\R\ - (2|7'| + k') = 2r - 2\I'\ - k'. If G[R] is a 2r-path, then the components of 

G[R \ N(I')] are paths. If G[R] is a 2r-cycle and V ^ 0, then the components of 

G[R\N(I')] are also paths. Let k be the number of components of G[R\N(I')} with 

an odd number of vertices. (If I' = 0, then k = 0.) So, 

\lnR\< a(G[R\ N(I')]) = \R\N(p\~k + k 

2r - (2\I'\ + k1) - k , |T/1 k! k 
= y-<—L2—I + k = r - \I'\ + - < r - i ' . 

2 ' ' 2 2 ~ ' ' 

The last inequality follows as k < k' since condition 3 is assumed to be satisfied and, 

thus, \lnR\ <r- \I'\. So, a(G) = \I'\ + \I n R\ < \I'\ + (r - \F\) = r. But, 

by the Induced Path Theorem (cited earlier in this section), a(G) > r(G). Thus, 

a(G) = r(G). • 

2 .3 .4 A n a p p l i c a t i o n : H a m i l t o n i c i t y 

The previous characterization led the author to a conjecture and partial results for a 

new sufficient condition for the Hamiltonicity of a graph. The condition was known 

to be true for graphs of radius one and two, and believed to be true for graphs of any 

radius. A proof was submitted to the Journal of Graph Theory. The referee found 
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Figure 2.8: In all three graphs, r = 3 and R = {^0,^1, • • • ,^5} induces a 6-cycle, with 

bipartition (B, W), where B = {VQ,V2,V4,} and W = {^1,^3,^5}. G\ satisfies all the condi-

tions of Theorem 2.9 and a(Gi) = r(G\) = 3. a((?2) = 4 ^ 3 = r{G2) as G2 fails condition 

(3). In this case, for the independent set / ' = {VQ,V^} in G[JR'], \NR(I')\ = 2|/ ' | + k', 

where k' = 0, but the number of odd paths in G[R \ N(I')] = 2, which is greater than k'. 

a(Gs) — 4^3 — r(Gs) as G3 fails condition (2). In this case, for the independent set 

I' = {^8} in G[R'], I' has fewer than \I'\ white neighbors. 

errors with the cases where the radius equals three and four. These cases have not yet 

been remedied. The result for the case where the radius is greater than four stands 

and is included here. Finding sufficient conditions for graphs having Hamilton paths 

or cycles is a well-researched problem [43]. 

The distance between vertices v and w in a graph G is the length of a shortest 

path between v and w in G and is denoted (IG(V, W). If n, n' and m are integers, with 

0 < n < m and 0 < n' < m, let d(n, n') (mod m)= min{n — n' (mod m),n' — n (mod 

m)}. If the modulus referred to is clear, then d(v,w) may also be used. 

Definition 2.10. For a graph with a distinguished set of vertices R = {vo, V\,..., V2r-i], 

let Nij be the set of vertices adjacent to both v^ and Vj but not adjacent to any other 

vertex in R. If the graph G[Nij] induced on these vertices is complete, let Pij be a 

Hamilton path in G[Nij], Let Nij^ be the set of vertices adjacent to Vi, Vj and v^ in 

R, but not adjacent to any other vertex in R. If the graph G[Ni^ induced on these 

vertices is complete, let Pij^ be a Hamilton path in G[Nitj^}-
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Theorem 2.11. For every connected graph where the independence number equals its 

radius r, having an induced path or cycle, vo,V\,..., i ^ - i (with VQ adjacent to v^r-x 

in the latter case), on the set R = {v0,Vi,..., v^r-i}, then 

1. the graph G[Nitj] is complete, 

2. the graph G[Nijtk] «5 complete, 

3. every vertex in Nj is adjacent to every vertex in Njtk, and 

4. every vertex in N^ is adjacent to every vertex in A 7 ^ . 

Proof. Suppose G is a graph with independence number a — a(G), radius r = r(G), 

a = r, and has an induced 2r-path, uo,fi, • • • ,^2r-i (with VQ adjacent to U27—1 m 

the case that G has an induced 2r-cycle), on the set R = {vo,v%,... ,v2r-i}- Let 

R' = V(G) \ R. Let (B, W) be a bipartition of G\R}. The vertices in B are black and 

the vertices in W are white. 

We first show (1) that G[Nitj] is complete. Suppose v,w € Nitj. Suppose they are 

not adjacent. Let / = {v, w} be the set containing these vertices; / is an independent 

set in G[R'}. Theorem 2.9 implies that i" has at least | / | = 2 white neighbors and 

|7| = 2 black neighbors. But, by definition, the only neighbors of I in R are Vi and Vj, 

contradicting the theorem. Thus, v and w must be adjacent and G[Nij] is complete. 

The proof of (2) is similar. G[Nitjk] is complete: if two vertices in Nitjtk are 

independent they must have at least four neighbors in R but, by definition, there are 

only three. 

We will now show (3) that every vertex in Nij is adjacent to every vertex in Nj^-

Suppose v € Nij and w € A ^ and / = {v,w} C R' is an independent set in G[i?']. 

Then Theorem 2.9 implies that I has at least four neighbors in R but, by definition, 

the only neighbors of / in R are v^, Vj, and Vk, which is a contradiction. Thus, v and 

w must be adjacent. 
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The proof of case (4) is analogous to the proof of case (3). 

• 

Theorem 2.12. Every connected graph where the independence number equals its ra-

dius r, having an induced 2r-cycle, VQ, V\, ..., v2r-i, on the set R = {vo, V\,..., v2r-i}, 

is 2-connected. 

Proof. Assume G is a connected graph where the independence number equals its ra-

dius r, having an induced 2r-cycle, v0, Vi,..., v2r-i, on the set R = {v0, vi,..., v2r-i}-

Let R' = V\R. 

Let v, x and y be any vertices of G. It will be shown that there is a path from 

x to y in G — v. Theorem 2.9 implies that every vertex in R' is adjacent to at least 

two vertices in R. Thus, if x or y are in R' then it must be adjacent to at least one 

vertex in R — v. Since R induces a cycle in G, the graph induced on R — v must be 

connected. Then either x and y belong to this connected induced subgraph or are 

adjacent to one of the vertices of this subgraph. Thus, the deletion of at least two 

vertices is required in order to disconnect G. • 

Theorem 2.13. For every connected graph where the independence number equals 

its radius r, r > 3, having an induced 2r-cycle, VQ,VI, ... ,V2T-\, on the set R — 

{w0,^i; • • • ,V2r-i}, if v G Rl = V \ R then v G Niti+i or v G - /V^+i^ (where i G 

{ 0 , 1 , . . . , 2r — 1} and all indices are assumed to be mod 2r). 

Proof. Let G be a connected graph where the independence number equals its radius 

r, having an induced 2r-cycle, VQ,VI, ... ,v2r-i, on the set R = {v0,Vi,... ,v2r-i}-

Note that for i,j G { 0 , 1 , . . . , 2r - 1}, da{vuVj) < d(i,j) < r. Let R' = V \ R and 

let v G R'. Let W — {v0,v2, • • • ,v2r-2} a n d B = {vi,v3,... ,w2r-i}- (B,W) is a 

bipartition of the graph induced by R. A vertex in B is black, while a vertex in W is 

white. 
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Theorem 2.9 implies that v is adjacent to at least one white and one black vertex. 

Suppose that v is adjacent to Vi and Vj. It will be shown that d(i,j) < 2. Suppose it 

is not; that is, suppose d(i,j) > 3. 

First consider the case where 3 < d(i,j) < r. Assume j = i + d(i,j) (mod 

2r). It will be shown that the eccentricity of t>j is no more than r — 1. Let Rx — 

{fi,fi+i,...,Vi+(d(i,j)-i) = Vj-i}, R2 = {vi-i,Vi-.2,---,Vi-(r-2) = vi+r+2}, and let 

R3 = {vj,vj+1,Vj+2,..:,vj+r+1-d(i,j) - vi+r+1}. R - i?i U R2 U R3. If w G Rly 

dc(vi,w) < d(i,j) — 1 < r — 1. So, dG(vi,w) < r — 2. If w G i?2, da(vi,w) < r — 2. If 

w G i?3, dG(vi,w) < dG(vi,Vj) + dG(vj,vj+r+l^d{iij)) < 2 + (r + 1 - d(i,j)) < r + 3 -

d(i,j) < r—1. So if tu € i?, dG(vi,w) < r — 1 and, for w e R—Vi+r+i, dc(vi,w) < r — 2. 

If w G -R' then Theorem 2.9 implies that it must be adjacent to at least two vertices 

in R and, in particular, to some vertex besides vi+r+l. Assume w G R' and that w is 

adjacent to v\ € R—Vi+r+i. Then dG(vi, w) < dG(vi,vi)+da(vi,w) < (r—2) + l = r—1. 

So the eccentricity of Vi is no more than r — 1 and r(G) < r. 

Secondly, consider the case where d(i, j) = r, that is j = i+r, and r > 3. It will be 

shown that the eccentricity of fj is no more than r—1. Let Ri — {v.hvi+i,..., Vj+(r_2)}, 

R2 = {vi-i,Vi-2, • • • ,Vi-(r-2)}, and let R% = {vi+(r-i),vi+r = Vj,vi+(r+i) = ^_ ( r _ i )} . 

i? = i?x U i?2 U R3. IfwE Ri, dG(vi, w) < dG(vi,vi+(r-2)) <(i + r-2)-i<r-2. 

If w G R2) dG(vi,w) < dG(vi,Vi-(r-2)) < r -2. If w G -R3, G?G(^,W) < 3 < r - 1 

(since r > 3). So if it; G i?, dG(vi,w) < r — 1 and, for w £ R\ {fj+(r_i),i>t_(r_i)}, 

dc(fi, w) < r — 2. If y; G R! then Theorem 2.9 implies that it must be adjacent to at 

least one white vertex and one black vertex. Since fi+(r_i) and vi_(r_1) are either both 

black or both white, w is adjacent to some vertex in R \ {fi+(r_i), i>j_(r_i)}. Assume 

w G R! and that iu is adjacent to v\ G i? \ {wi+(r_i), Vi_(r_i)}. Then dG(vi,w) < 

dG(vi, v{) + dG(vi,w) < (r — 2) + 1 = r — 1. So the eccentricity of t>j is no more than 

r — 1 and r(G) < r. 

Lastly, consider the case where d(i,j) — 3. So, Vj — vi+3. Let i?i = {v^, vi+i, ^+2}-
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Let R2 = {vhVi-i,...,Vi^r-.2) = vi+r+2}- Let R3 = {wi + 3 , t ; i + 4 , . . . , t> (j+3)+(r_4) = 

Vj+r_i}. i ? 1 U i ? 2 U i ? 3 = i ? \ { v i + r , u i + r + 1 } . I fw € i?i, dG(vi,w) < dG(vi,vi+2) = 

2 < r - 2. If to e -R2, dG{vi,w) < dc(vi,Vi-(r-2)) = r - 2. If w £ R3, dG(vi,w) < 

dG{vi,v) + dG(v,vi+3) + dG(vi+3,V(i+3)+(r-.4)) = 2 + ( r - 4 ) = r - 2 . If w G i?', Theorem 

2.9 implies that it is adjacent to at least two vertices in R. If w G R' is adjacent to a 

vertex v\ E R\ U R2 U i?3 then dG(vi, w) < dG(vi,vi) + dG(vi,w) < (r — 2) + 1 = r — 1. 

So if no vertex in Z?' is adjacent only to vertices Vi+r and ui+r .+i, then the eccentricity 

of Vi is no more than r — 1 and r(G) < r — 1, contradicting the fact that r(G) = r. 

Assume, then, that there is a vertex Wi € R' adjacent only to vertices vi+r and Vi+r+i. 

By a parallel argument it can be shown that the eccentricity of vi+4 is no more 

than r — 1 unless there is a vertex u>j+4 G R' adjacent only to vertices V(j+4)+(r_1) and 

t>(i+4)+r. So assume that there is a vertex u>i+4 G /?' adjacent only to these vertices. 

Here we have dG(fi+4,^(i+4)+(r-i)) < ^G(wi+4,^i+r) + dG(vi+r,Wi) + dG(wi,wi+i) + 

dG(wi+4, Wi) = (r — 4) + 1 + 1 + 1 = r — 1. So if Wi is adjacent to wi+4: then there 

is a path of length less than r from vi+4: to tUj+4, and the eccentricity of vi+^ is less 

than r and r(C) < r, contradicting the fact that r(G) = r. Thus, / ' = {w^, Wi+4) is 

an independent set in /?'. Then Theorem 2.9 implies that | ] V R ( / ' ) | = 2\I'\ + k', for 

some non-negative integer k'. Here NR(F) = {wi+r,ui+r+1,V(j+4)+(r._1), W(,+4)+r}. So 

IATK(JT/) [ = 4 and fc' — 0. But Theorem 2.9 also implies that the number of paths 

with an odd number of vertices in G[R \ N(I')] is no more than k' — 0. But the 

number of paths with an odd number of vertices in G[R \ N(I')] is two. It is enough 

to show that there is a single path in G[R \ N(I')] which has an odd number of 

vertices. Vi+r+2 G R \ N(I') but Vi+r+i,vi+r+3 G N(I'). Thus, the path induced on 

the single vertex {vi+r+2} is an odd component of G[R \ N(I')]. So the assumption 

that d(i,j) = 3 yields a contradiction. 

In each case the assumption that v is adjacent to vertices v^, Vj G R where d(i, j) > 

3 leads to a contradiction. So d(i,j) < 2. If v G R', Theorem 2.9 implies that it is 
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adjacent to at least two vertices in R, at least one of which is white and one of which 

is black. If Vi is white then the only possibilities for a black vertex are either v^i or 

Vi+i. v may be adjacent to at most one more vertex in R: if v is adjacent to both Vi 

and vi+i then v may also be adjacent to either V{_\ or v;+2, and if v is adjacent to both 

Vi and Vi-i then v may also be adjacent to either vj_2 or vi+i. So, iivG R', adjacent 

to Vi e R, then v must be in iV^+i, iV,-M, Niti+hi+2, iVi_i)i)i+1, or JVj_2,i-i,i. All of 

these sets have one of two forms: either there are two indices which are consecutive 

integers, or there are three indices which are consecutive integers. Thus, if v G R' 

then v G Njj+i or v G NJJ+IJ+2, for some integer j G { 0 , 1 , . . . ,2r — 1}, with all 

indices assumed to be mod 2r. • 

Fajtlowicz's Graffiti program made the following conjecture: 

Conjecture 2.14. For any connected graph with independence number a, radius r, 

and path covering number p, a >r + ^ [16]. 

The path covering number of a graph is the minimum number of vertex disjoint 

paths so that each vertex of the graph is included in (exactly) one of the paths. If 

the graph has a Hamiltonian path then the path covering number of the graph is one. 

So the conjecture implies that, if a = r, then p — 1, and the graph has a Hamilton 

path. This conjecture is a generalization of Graffiti's early and well-known conjecture, 

mentioned above, that for a connected graph a > r. DeLaVina, Fajtlowicz, and 

Waller have proved the conjecture for trees [16]. DeLaVina's Graffiti.pc has made 

a number of conjectures of sufficient conditions for a connected graph to have a 

Hamilton path including: if the independence number of a connected graph equals its 

radius, then the graph has a Hamilton path [14]. Fajtlowicz has proved this conjecture 

for graphs with radius no more than three [27, 28]. DeLaVina, Pepper and Waller 

proved the general case in [17]. 

It was noted above that Fajtlowicz showed that connected graphs whose inde-

pendence number equals its radius r have either an induced 2r-path or an induced 
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2r-cycle. The preceding characterization of connected graphs whose independence 

number equals its radius and structural consequences can now be used to show that 

those graphs having induced 2r-cycles are Hamiltonian. 

Conjecture 2.15. Every connected graph whose independence number equals its ra-

dius r, having an induced 2r-cycle, is Hamiltonian. 

The case where r = 1 is pathological in the sense that the definition of a cycle 

standardly requires at least three vertices, while the conditions of the theorem require 

an induced 2-vertex cycle. If r = 1 and the graph does have at least three vertices, 

then it is indeed Hamiltonian. In this case R — {v0,Vi}, R! is non-empty, and any 

independent set in G[R'] can have at most one vertex and G[R'\ is complete. Let P 

be a Hamilton path in G[i?']. Theorem 2.9 implies that every vertex in R' is adjacent 

to both VQ and v\. So VQPVI is a Hamilton cycle. 

If r = 2, the theorem holds as a consequence of Chvatal and Erdos' Theorem: If 

a graph with at least three vertices is s-connected and a < s, then the graph has 

a Hamilton cycle [12]. In this case a(G) -- 2 and Theorem 2.12 implies that G is 

2-connected; thus, the Chvatal-Erdos Theorem applies and G has a Hamilton cycle. 

The cases where r = 3 and r = 4 remain open. 

Theorem 2.16. Every connected graph whose independence number equals its radius 

r, r > 4, having an induced 2r-cycle, is Hamiltonian. 

Proof. Let G be a connected graph with independence number a = a(G), radius 

r, r > 3, and a = r. Let v0,Vi,..., v2r-i be an induced 2r-cycle. Let R — 

{vo, vi,..., t>2r-1}> a n d let R' = V(G) \ R. 

Assume then that r > 4 (and \R\ > 8). It can also be assumed that R' is not 

empty. If R' is empty then G is the cycle induced on R and thus has a Hamilton 

cycle. 
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Theorem 2.13 implies that, if v € R', then v € ATi>i+1 or v € N^j+1^.2 (for some 

integer i € { 0 , 1 , . . . , 2r — 1}, and where the indices are assumed to be mod 2r). Thus, 

# = | J (^ . i+ iUTV^+i ,^ ) -
iG{0,l,...,2r-l} 

iV0,i U iVo.i.2 U N1>2 U Nli2t3 U . . . U iV2r_2j2r_1 U tf2r_2)2r_1>0 U iV2r_lj0 U JV2r-i,o,i, 

where any of the sets A^j+i or JV^j+i^+2 may be empty. 

Theorem 2.11 implies that the graphs induced on each of the sets iV^i+i and 

iVj^+i^+2 are complete. Complete graphs have Hamilton paths. Represent these 

paths as P^i+i and Piti+iti+2, respectively. Then the path represented 

vO-fb,l-fb,l,2vl-Pl,2-fl,2,3v2 • • • v 2 r -2- f2r -2 ,2r - l -P2r-2 ,2r - l ,0 v 2r - l -F2r- l ,0 -P2r- l ,0 , l 

is a Hamilton path in G. 

VQ, by definition, is adjacent to every vertex in iVo.i and, in particular, to the 

first vertex in the Hamilton path P0,i in C^iV^i]. Theorem 2.11 implies that every 

vertex in JV0il is adjacent to every vertex in iVoilj2 and, in particular, the last vertex 

of the Hamilton path PQ,I is adjacent to the first vertex of the Hamilton path Po,i,2 

in G[Notit2\. Every vertex in iVojl)2 is adjacent, by definition, to V\ and, in particular, 

the last vertex of Po,i,2 is adjacent to vx. 

If either or both of -/V0ji or iVo,i,2 is empty the given path still works. If, for 

instance, ^0,1 is empty then, since VQ is adjacent by definition to every vertex in 

NQ,I,2, v0 is adjacent to the first vertex of Po,i,2- If both iVo,i and AT0ilj2 are empty 

then, since v0 is adjacent to vi, the path schematized above remains well-defined. 

A similar explanation can be given for every sequence from Vi to Vi+i. Vi, by 

definition, is adjacent to every vertex in iV^j+i and, in particular, to the first vertex 

in the Hamilton path P^+i in G[Niji+i]. Theorem 2.11 implies that every vertex in 

Niti+\ is adjacent to every vertex in A^ij+1)j+2 and, in particular, the last vertex of 

the Hamilton path Pj^+i is adjacent to the first vertex of the Hamilton path Piti+iii+2 
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in G[JVjji+lij+2]- Every vertex in Nii+ii+2 is adjacent, by definition, to vi+1 and, in 

particular, the last vertex of PJ)J+ 1 JJ+2 is adjacent to t>j+i-

In general, if either or both of iV^+i or T V ^ + i ^ is empty the given path still 

works. If, for instance, iVj>i+1 is empty then, since v{ is adjacent by definition to every 

vertex in Niti+iti+2, v% is adjacent to the first vertex of Pi>i+iti+2- If both iVj^+i and 

Niti+iti+2 are empty then, since Vi is adjacent to fj+i, the path schematized above 

remains well-defined. 

If -/V2r—1,0,1 is n ° t empty then the last vertex in î r—1,0,1 is adjacent to v0 and this 

Hamilton path is actually a Hamilton cycle. In case A^r-1,0,1 is empty then, since 

V2r-i is adjacent to v0, the path above is still actually a cycle, and G is Hamiltonian. 

• 

2.4 Open Problems 

Included here are open problems raised by the research presented above, or related 

to this research. 

1. Fullerenes 

(a) Ryan Pepper has conjectured that for any fullerene other than C24, the 

independence number is at least two-fifths the number of vertices. Com-

putations verify this conjecture for fullerenes with up to 100 vertices. 

(b) Is it possible to find the independence number of a fullerene in polynomial-

time? Fullerenes belong to the class of cubic planar graphs. For these 

graphs the decision problem for independence number is known to be NP-

complete. But fullerenes have additional structure. 

2. Radius 
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(a) Is it possible to determine if the independence number of a graph equals 

its radius in polynomial-time? 

(b) Characterizing the graphs where a — qr — q2 + q. 

(c) Graffiti's conjecture: a > r + 2^ : . 

3. Hamiltonicity 

(a) Does the sufficient condition of Theorem 2.16 hold in the cases where r = 3 

and r = 4? 
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Chapter 3 

Critical Independent Sets, the 

Critical Independence Number, 

and Applications 

When trying to find a maximum independent set (MIS) in a graph, the pendants of 

the graph may always be included. These vertices and their neighbors can then be 

removed, reducing the problem to that of finding a MIS on the remaining subgraph. 

A maximum critical independent set is a generalization of the set of pendant vertices: 

it may be included in a maximum independent set of the graph. It and its neighbors 

may be removed, similarly reducing the problem of finding an MIS to a subgraph. An 

algorithm for finding these sets in polynomial-time is presented, along with a proof 

that the algorithm works. Following this is a theoretical result about decomposing a 

graph into two subgraphs dividing the problem of finding the independence number 

into "easy" and "hard" parts. Two applications are also included. 

The work in the first section appeared in [57]. 
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Figure 3.1: The vertices {a, b} form a (maximum cardinality) critical independent set; 

this set of vertices can be extended to a maximum independent set of the graph. 

3.1 Finding Maximum Critical Independent Sets 

Finding a maximum independent set (MIS) in a graph is a well-known widely-studied 

NP-hard problem [42]. A polynomial-time algorithm for reducing this problem to the 

MIS problem on a subgraph is described here. 

An independent set of vertices / is a critical independent set if |J| — \N(I)\ is 

maximized. Butenko and Trukhanov proved that any critical independent set is 

contained in a maximum independent set [10]. This can lead to a speed-up of the 

problem of finding a maximum independent set (MIS) and the independence number 

of a graph: if / is a critical independent set of a graph G, then the problem of finding a 

MIS can be reduced to finding one for G\(IUN(I)). In fact, Butenko and Trukhanov 

demonstrate that the speed-up from this reduction can be dramatic. 

The algorithm Butenko and Trukhanov use for finding a critical independent set 

does not always result in a non-empty critical independent set in cases where there 

is, in fact, such a set, and thus does not always result in a reduction of the problem 

of finding a MIS to a smaller graph. A criterion is given here for when a non-empty 

critical independent set exists as well as an algorithm for finding one in polynomial-

time. 

Butenko and Trukhanov ask "how to find the largest critical independent set in a 

graph?" This question is answered here. The specified algorithm can be extended to 
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yield a maximum-cardinality critical independent set. 

Definition 3.1. C C V(G) is a critical set of a graphG if\C\-\N(C)\ > \U\-\N(U)\ 

for every U C V(G). 

Definition 3.2. / C V(G) is a critical independent set of a graph G if I is an 

independent set of vertices and \I\ — \N(I)\ > \U\ — \N(U)\ for every independent set 

UCV(G). 

A graph may contain critical independent sets of different cardinalities. A graph 

consisting of a single edge (K2, the complete graph on two vertices) has critical 

independent sets of cardinalities 0 and 1. A graph may not contain a non-empty 

critical independent set. For instance, the empty set is the unique critical independent 

set of K%. In fact, for any graph with a perfect matching (which is, in a well-defined 

sense, almost every graph with an even number of vertices [6, p. 178]), the empty 

set is a critical independent set. Finding a critical independent set using Ageev's 

algorithm may yield no reduction in these cases. There are, though, graphs with 

perfect matchings which have non-empty critical independent sets: Ki is an example. 

We now define the bi-double graph of a given graph. This graph is utilized in 

a proof of Zhang [84], and referred to in the papers of Ageev and Butenko and 

Trukhanov, and is a more generally useful proof technique (see, for instance, [3]). 

Definition 3.3. For a graph G, the bi-double graph B{G) has vertex set V U V, 

where V is a copy of V. If V = {t>i, V2, • • •, vn}, let V = {v[,v'2, • • •, v'n}. Then, 

(x,y') E E(B(G)) if, and only if, (x,y) e E(G). 

Theorem 3.4. (Zhang [84, P- 4^7]) If C is a critical set then the isolated points in 

G\C], the graph induced on C, is a critical independent set. 

Theorem 3.5. (Ageev [1, p. 294]) F°r a graph G, if I is a maximum independent 

set in the bi-double graph B(G), then U = V(G) C\ I is a critical set for G. 
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The preceding two theorems imply that the following algorithm results in a critical 

independent set Ic in a graph G: 

1. Construct the bi-double graph B(G) of G. 

2. Find a maximum independent set J in B(G). 

3. Let J' = V(1J. 

4. Let Ic be the set of isolated points in G[J']. 

Since a maximum independent set in a bipartite graph can be found in polynomial-

time, this algorithm yields a critical independent set in polynomial time. (Zhang was 

the first to prove the existence of such an algorithm). 

Butenko and Trukhanov showed that identifying a non-empty critical indepen-

dent set gives a polynomial-time reduction of the problem of finding a maximum 

independent set to a proper subgraph. The following lemma identifies a fact about 

the structure of critical independent sets, and leads to a new proof (below) of Butenko 

and Trukhanov's theorem. 

Definition 3.6. For disjoint subsets X and Y of the vertices of a graph G, there is 

a matching of X into Y if there is a set of disjoint edges having one endpoint in X 

and the other in Y and that saturates all of the vertices in X. 

Lemma 3.7. (The Matching Lemma) If Ic is a critical independent set, then there 

is a matching from N(IC) into Ic. 

Proof. Note that Ic and N(IC) are disjoint. Let B be the subgraph of G whose 

vertices are Ic U N(IC), with (x,y) € E(B) if, and only if, x € Ic, y 6 N(IC), and 

(x,y) 6 E(G). Clearly, it is enough to prove the claim for this subgraph. Let 

J C N(IC). Suppose, \J\ > \N{J)\. Let X = IC-N(J). Then N(X) C N(IC) - J (so 

| JV( I c ) |> | iVpO| + | J | ) , a nd 

\X\ - \N(X)\ > \X\ - \N(X)\ - ( |J | - \N(J)\) = 
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(\X\ + \N(J)\)-(\N(X)\ + \J\)>\IC\-\N(IC)\. 

This contradicts the fact that \IC\ is a critical independent set. So, it must be that 

\N(J)\ > \J\. Since this is true for every subset J C N(IC), Hall's Theorem (see, for 

instance, [9]) implies the claim. • 

What follows is a corollary that will be needed in the sequel. 

Corollary 3.8. If Ic is a critical independent set in a graph G, and M is a maximum 

matching ofG, then all the vertices of N(IC) are saturated by M. 

Proof. Let Ic is a critical independent set in a graph G, and M is a maximum matching 

of G. Let iV be a matching from N(IC) into Ic. So |iV| = \N(IC)\. Such a matching 

is guaranteed by Lemma 3.7. Let M' be the matching formed by removing all edges 

from M which are incident to vertices in N(IC). Thus \M'\ > \M\ - \N(IC)\. By 

construction, the edges in N and M' must be independent. Let N' = N U M'. N' 

is a matching and \N'\ = \N\ + \M'\ > \N(IC)\ + ( |M| - |iV(/c)|) - \M\. Hence 

N' is a maximum matching which saturates the vertices in N(IC). If M does not 

saturate the vertices of N(IC), then N' is a matching with greater cardinality than 

M, contradicting the assumption that it is maximum. • 

The following proof of Butenko and Trukhanov's central theorem is new. 

Theorem 3.9. (Butenko & Trukhanov) If Ic is a critical independent set of a graph 

G, then there exists a maximum independent set I of G, such that Ic C I. 

Proof. Let Ic be a critical independent set of G. Let J be a maximum independent 

set of G, and let J/v = J D N(IC). Let J'N C Ic be the vertices matched with vertices 

of JJV by the matching from N(IC) to Ic given by Lemma 3.7. Let J' = (J\ Jjv) U ĵv-

Clearly, J n J'N is empty, \JN\ = \J'N\, J' is an independent set in G, and \J\ = \J'\. 

So J ' is a maximum independent set. Now Ic U J' is an independent set and, since 

J' is a maximum independent set, it follows that \IC U J ' | = \J'\ and, thus, 7C C J', 

proving the theorem. • 
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If there is any non-empty independent set I such that | / | > |iV(I)|, then there is 

a non-empty critical independent set. If there is a pendant for instance, there is a 

non-empty critical independent set. In this sense, and in the sense that identification 

and removal of these sets reduces the problem of finding maximum independent sets, 

a critical independent set can be viewed as a generalization of a pendant. 

The critical independent set algorithm given above yields a critical independent 

set—but this set may be empty in the case where non-empty independent sets exist. 

The following results imply an algorithm which yields a non-empty critical indepen-

dent set when one exists. 

Lemma 3.10. If Ic is a critical independent set of the graph G then I = ICU ( V — 

N(IC)) is a maximum independent set of the bi-double graph B{G). 

Proof. Clearly / is independent. Suppose there is a maximum independent set J C 

V{B{G)) such that \J\ > \I\. Let Jv = JnVandJy, = J n V . So, \J\ = \Jv\ + \Jv>\ 

and | / | = |/c | + \V \ N(IC)\. Since Jv, = V \ N(JV), \V \ N(JV)\ = \V\ - \N(JV)\, 

and \V \ N(IC)\ — |V| — \N(IC)\, we have the following equations: 

\J\ = \Jv\ + \Jv>\ = \Jv\ + \V \ N(JV)\ = \JV\ + \V\ - \N(JV)\, 

\I\ = \IC\ + \V \ N(IC)\ = \IC\ + \V\ - \N(Q\. 

Since \J\ > \I\, it follows that \JV\ + \V\ - \N(JV)\ > \IC\ + \V\ - \N(IC)\, and \JV\ -

\N(Jv)\ > \IC\ — |-^(^c)|- Since Jy is independent, Ic is not a critical independent set, 

according to the definition of a critical independent set, contradicting our assumption 

that it was. Thus, / is a maximum independent set of B(G). • 

Theorem 3.11. A graph G contains a non-empty critical independent set if, and 

only if, there is a maximum independent set of the bi-double graph B(G) containing 

both v and v', for some vertex v G V(G), and its copy v' € V. 

65 



Proof. If Ic is a non-empty critical independent set of G then, by Lemma 3.10, / = 

Ic U ( V — N(IC)) is a maximum independent set of B(G). For any vertex v & Ic, v is 

not adjacent to v' in B{G). Thus, v' € V — N(IC). Thus, w and •?/ are in / . 

Suppose I is a maximum independent set of B(G) containing both v and v'. Then 

B € J = / f l V{G)- By Theorem 3.5, J is a critical set in G, and by Theorem 3.4, 

the isolated points in G[J] are a critical independent set in G. Suppose v is not an 

isolated point in G[J). Then there is a vertex w € J such that v is adjacent to w in 

G. This implies that u> is adjacent to v' in B{G). So J contains v' and w and / is 

independent, contradicting the assumption that v is not isolated in G[J}. Thus, the 

set of isolated points of G[J] is non-empty. • 

Corollary 3.12. A graph G contains a non-empty critical independent set if, and only 

if, there is a vertex v 6 V(G) such that a(B(G)) = a(B(G) - {v, v'} - N({v, v'}) + 2. 

Proof. This follows immediately from Theorem 3.11. • 

Corollary 3.12 suggests a polynomial-time algorithm for finding a non-empty crit-

ical independent set in a graph if one exists: 

1. Construct graph B(G). 

2. Set BOOL=false. 

3. For i = 1 , . . . , n = \V(G)\, set BOOL=true if a(B(G)) = a(B(G) - {vuv[} -

N({Vi, vl}) + 2. If BOOL=true, break. 

4. IfBOOL=true, 

(a) Find a maximum independent set J in B(G) — {vijV^} — N({vi,vl}). 

(b) Let J' = JnV. 

(c) Let i" be the set of isolated points in G[J'} together with v. 
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If BOOL=true, J is a non-empty critical independent set. If BOOL=false, then 

no non-empty critical independent set exists in G. 

Definition 3.13. A critical independent set is maximal if there is no critical indepen-

dent set which properly contains it. It is maximum if there is no critical independent 

set with larger cardinality. 

Butenko and Trukhanov raised the question of how to identify maximum critical 

independent sets. These sets will result in a maximum reduction in the problem of 

finding a MIS. The following theorem justifies an algorithm that yields these sets. 

Theorem 3.14. Any critical independent set is contained in a maximum critical 

independent set. 

Proof. Suppose Ic is a critical independent set and Jc is a maximum critical indepen-

dent set. Let I = ICU J, where J = JC\(ICU N(IC)). It is enough to show that I is 

a maximum critical independent set. Clearly I is independent. 

We will first show that / is a critical (independent) set; in particular, that \I\ — 

\N(I)\ > \IC\ - \N(IC)\. Since Ic and J are disjoint, |7| = \IC\ + \J\. N(I) C N(IC) U 

[N(JC) \ (Ic U N(IC))] and |JV(/)| < |jV(Ic)| + \N(JC) \ (Ic U N(IC))\ So, 

| / | - \N(I)\ > \IC\ - \N(IC)\ + \J\ - \N(JC) \ (ICUN(IC))\. 

It is enough then to show, \J\ > \N{JC) \ (Jc U N(IC))\. 

Now, Jc = J U (Ic n Jc) U (N(IC) n Jc). By definition, J , Ic D Jc, and N(IC) D Jc 

are mutually disjoint. So, 

\jc\ = \j\ + \ic n j c \ + \N(ic) n Jc\. 

Also, N{JC) = (IcnN(Jc))U(N(Ic)nN{Jc))U(N(Jc)\(IcUN(Ic)). Clearly, IcnN(Jc), 

N{IC) n N(JC) and N(JC) \ (Ic U A^(/c)) are disjoint. So, 

\N(JC)\ = \IC n N(JC)\ + \N(Q n N(JC)\ + \N(JC) \ (Ie U N(IC))\. 
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Then, 

\JC\-\N(JC)\ = (3.1) 

(\N(ic)nJc\-\N(jc)nic\) + \icnJc\ + \J\-(\N(ic)nN(jc)\ + \N(jc)\(icuN(ic))\). 

Now, Theorem 3.7 guarantees that there is a matching from N(JC) to Jc and from 

N(IC) to Ic. Since the vertices in ICC\ N(JC) C N(JC) must be matched to vertices 

in. N(IC) n Jc, and the vertices in N(IC) D Jc C iV(/c) must be matched to vertices in 

Jc n iV(Jc), it follows that \IC n 7V(JC)| = I J"c n iV(Je)I and |iV(/c) n Jc\ - \N(JC) f~l Ic | , 

the first term in Equation 3.1, is 0. 

Assume that \N(JC) \ (Ic U A^(7C))| > \J\. Note that N(IC n Jc) C iV(/c) n N(JC) 

and |A^( / c nJ c ) | < \N(IC) f) N(JC)\. Then Equation 3.1 gives, 

\JC\ - |JV(JC)| = |/c n Jc\ + \J\ - (\N(IC) n N(JC)\ + \N(JC) \ (Ic U N(IC))\) 

< \ic n Jc\ - |7V(/C) n N(jc)\ < \ic n jc\ - \N(IC n Jc)|, 

contradicting the fact that Jc is a critical (independent) set. Thus, \N(JC) \ (Ic U 

N(IC)\ < 1-̂1 and 7 is a critical independent set. 

Lastly, we show that I is maximum; in particular that | / | = |JC|. It was noted 

above that Jc = (Jc D Ic) U (Jc D iV(/c)) U J, |JC| = |JC D Ic\ + \JC D 7V(/C)| + | J | , 

and | / | = \IC\ + \J\. Since Ic is a critical independent set, by the Matching Lemma 

3.7 there is a matching from N(IC) to Ic. Let J'N C 7C be the vertices matched to 

(JcnN(Ic)) C JV(ic) under this matching. So \J'N\ = \JcnN(Ic)\. Clearly J'N and 

Jcf]Ic are disjoint. | / | = |/C| + | J | = I A | + | / C \ J ^ | + | J\ > \JcnN(Ic)\ + \Jcnlc\ + \J\ = 

| Jc|. Note that (Jc D Jc) C (Jc \ Jjy). So | / | > \JC\ and, since Jc is a maximum critical 

independent set, | / | — \JC\. Thus, / is a maximum critical independent set. 

• 

Corollary 3.15. If a vertex v of a graph G is contained in some critical independent 

set, then there is a maximum critical independent set which contains v. 
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Corollary 3.16. A maximal critical independent set is a maximum critical indepen-

dent set. 

The idea of the following algorithm is to find a maximal critical independent set 

I by choosing a vertex, testing if it is contained in a critical independent set and, if 

it is, adding it to / and removing it and its neighbors. In either case the process is 

repeated on the graph induced on the remaining vertices. 

The Maximal Critical Independent Set (MCIS) algorithm 

1. Construct the bi-double graph B(G) of G. 

2. i := 1, Ic := 0; 

3. If i > |y(G) | , return Jc. 

4. If Vi i V{B(G)), i:=i+l, and return to Step 3. 

5. lia(B(G)) = a(B(G)-{vhv'i}-N({vi,v'i})+2,BOOL:=true. Else, BOOL:=false. 

6. If BOOL=true, Ic := Ic U {vt}, V{B{G)) := V(B(G)) \ ( R ^ ' } U W ( K *,<}), 

i := i + 1. Return to Step 3. 

7. If BOOL=false, i:=i + l. Return to Step 3. 

T h e o r e m 3.17. The MCIS algorithm yields a maximum critical independent set. 

Proof. By Corollary 3.16 it is enough to show that this algorithm produces a maximal 

critical independent set. For graphs with a single vertex, the MCIS algorithm returns 

a one-element set. This set is clearly a maximal critical independent set. 

Suppose the MCIS algorithm produces a maximal critical independent set for 

graphs with n or fewer vertices. Suppose G has n + 1 vertices. If the only critical 

independent set of G is the empty set then, by Corollary 3.12, the test in Step 6 

will be negative and set I will remain empty after each loop. / is a maximal critical 

independent set. 
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Suppose G contains a non-empty critical independent set. Let i be the first index 

so that vt belongs to a critical independent set. Corollary 3.12 guarantees that the 

test in Step 6 will be negative. The MCIS algorithm then sets I := {vi} and continues 

on the graph G' induced on V(G) — {vi} — N({vi}). This graph has n or fewer vertices. 

By assumption, the MCIS algorithm (then) yields a maximal critical independent set 

J for G'. So / = J U {v^ is a maximal critical independent set for G. • 

Theorem 3.18. If I is a maximum critical independent set ofG, then the only critical 

independent set of G — I — N(I) is the empty set. 

This means that any further repetition of the MCIS algorithm will not yield any 

further reduction. 

3.1.1 Weighted Critical Independent Sets 

The results of Ageev, Butenko and Trukhanov all have analogues for weighted graphs. 

An anonymous referee for the Bulletin of the ICA asked "whether these results can be 

extended to the weighted version of the MIS problem as well." The answer is yes and 

maybe: a criterion can be specified for the existence of a critical weighted independent 

set which exactly parallels the criterion for existence in the non-weighted case, but it 

is an open question whether any critical weighted independent set is contained in a 

maximum weight independent set. 

Definition 3.19. A weighted graph is a graph where a nonnegative number Wi (called 

a weight) is associated to each vertex t>;. The weight of a set S C V is w(S) = 

Ylveswi- S ? s a cr"itical weighted set if 

w(S) - w(N(S)) > w(T) - w(N(T)) 

for any set T C V. A set I C V is a critical weighted independent set if I is 

independent and a critical weighted set. I is a maximum weight independent set 
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if I is independent and w[I) > w(J) for any other independent set J, A critical 

weighted independent set is maximum if there is no critical weighted independent set 

with larger weight. 

The weighted extensions of Zhang and Ageev's theorems are reproduced here as 

they are required for the proof of Theorem 3.23. 

Theorem 3.20. (Zhang, [84]) If C is a critical weighted set then the isolated points 

in G[C], the graph induced on C, is a critical weighted independent set. 

Theorem 3.21. (Ageev, [1]) For a graph G, if I is a maximum weighted independent 

set in the bi-double graph B(G), then U = V(G) D I is a critical weighted set for G. 

The criterion for determining if a graph has a non-empty critical independent 

set can be extended to the weighted case: there is a polynomial-time criterion for 

determining if a weighted graph has a non-empty critical weighted independent set. 

Lemma 3.22. If Ic is a critical weighted independent set of the graph G then I = 

Ic U (V — N(IC)) is a maximum weight independent set of the bi-double graph B(G). 

Proof. Clearly / is independent. Suppose there is a maximum weight independent 

set J C V(B(G)) such that w(J) > w(I). Let Jv = J n V and Jv, = J n V. So, 

w(Jv) + w(Jv>) = w(J) > w(I) = w(Ic) + w(V \ N(IC)). Since Jv, = V \ N(JV), 

w(V'\N{Jv)) = w(V)-w(N(Jv)), and w(V'\N(Ic)) = w(V)-w(N(Ic)), it follows 

that w(Jv) + w(V) - w{N(Jv)) > w(Ic) + w(V) - w(N(Ic)). By Theorem 3.21, Jv 

is a critical weighted set in G and, thus, that Ic is not a critical weighted set (nor a 

critical weighted independent set). 

Thus, since critical weighted independent sets are critical weighted sets, Ic is not 

a critical weighted set. Thus, / is a maximum weighted independent set of B(G). • 

Theorem 3.23. A graph G contains a non-empty critical weighted independent set if, 

and only if, there is a maximum weight independent set of the bi-double graph B(G) 

containing both v and v', for some vertex v £ V(G), and its copy v' G V. 
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Proof. If Ic is a non-empty critical weighted independent set of G then, by Lemma 

3.22, I — ICU (V — N(IC)) is a maximum weighted independent set of B(G). For any 

vertex v € Ic, v is not adjacent to v' in B(G). Thus, v' G V — N(IC). Thus, u and i/ 

are in / . 

Suppose / is a maximum weight independent set of B(G) containing both v and 

v'. Then v e J = I f) V(G). By Theorem 3.21, J is a critical weighted set in G, and 

by Theorem 3.20, the isolated points in G[J] are a critical weighted independent set 

in G. Suppose v is not an isolated point in G[J\. Then there is a vertex w € J such 

that v is adjacent to w in G. This implies that w is adjacent to v' in B(G). So / 

contains v' and u» and / is independent, contradicting the assumption that v is not 

isolated in G[J\. Thus, the set of isolated points of G[J) is non-empty. D 

If / is a maximum weight independent set of a graph G, let the weighted inde-

pendence number of G be aw(G) = w(I). Since every graph has a maximum weight 

independent set, aw(G) is well-defined. 

Corollary 3.24. A graph G contains a non-empty critical weighted independent set 

if, and only if there is a vertex v £ V(G) such that aw(B(G)) = aw(B(G) — {v, v'} — 

N({v,v'}) + 2w(v). 

Proof. This follows immediately from Theorem 3.23. • 

Whether Theorem 3.14 is extendable to the weighted case is an open question. 

Is every critical weighted independent set contained in a maximum critical weighted 

independent set? The proof that every critical independent set is contained in a max-

imum critical independent set made use of Theorem 3.7, which cannot be extended: 

it is not true that, if / is a critical weighted independent set, then there is a matching 

from N(I) into / . Consider the complete graph K% with three vertices. Let the ver-

tices be V = {^1,^2,^3}, having weights w\ = 1, w2 = \, and w3 = \. Let / = {f i} . 
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It is easy to verify that / is a critical weighted independent set of Kz. But there is 

no matching from N(I) = {^2,^3} to / . 

3.1.2 An application: Critical Independence Reductions for 

Fullerenes 

This investigation was inspired by an attempt, using Butenko and Trukhanov's the-

orem and the Zhang/Ageev algorithm, to reduce the problem of finding maximum 

independent sets in fullerene graphs—there is strong statistical evidence that the in-

dependence number of a fullerene is a predictor of its stability [33]. No reduction was 

found and, in fact, no reduction is possible. 

Definition 3.25. A fullerene or fullerene graph is a connected, cubic, planar graph 

whose faces are either pentagons or hexagons. 

Theorem 3.26. The empty set is the only critical independent set in a fullerene. 

(Equivalently, for every non-empty independent set I of a fullerene, \N(I)\ > \I\.) 

Proof. Suppose G is a fullerene and G contains a non-empty independent set i" such 

that |-/V(/)| < \I\. Since G is cubic, there are 3 | / | edges incident to set / . There 

are at least 3|J| edges incident to N(I). Thus, B\N(I)\ > 3 | / | and \N(I)\ > \I\ (and 

\N(I)\ = \I\). Thus, the graph G[IUN(I)], induced on IUN(I), is bipartite. Since 

G is connected, G = G[I U N(I)]. So G is bipartite, which contradicts the fact that 

fullerenes are not bipartite (it is a simple consequence of Euler's Theorem that they 

have twelve pentagonal faces and, thus, odd cycles). •• 

The details of the proof actually give the following stronger theorem. 

Theorem 3.27. If G is a connected, non-bipartite, regular graph then the empty set 

is the only critical independent set. 
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3.2 An application: Characterizing when Indepen-

dence equals Annihilation 

Pepper proved the annihilation number a of a graph is an upper bound for the inde-

pendence number a of a graph and identified several classes of graphs where equality 

holds. In this section the critical independence number of a graph is used to provide a 

characterization of all graphs where equality holds. Furthermore, a polynomial-time 

algorithm is provided for determining if these invariants are equal. The independence 

number is a well-known NP-hard invariant. For these graphs, the independence num-

ber is computable in polynomial-time. 

Pepper originally defined the annihilation number of a graph in terms of a reduc-

tion process on the degree sequence of the graph (akin to the Havel-Hakimi process; 

see, for example, [44]). Fajtlowicz later defined a still-unnamed invariant which he 

conjectured was a better upper bound for the independence number of a graph than 

Pepper's invariant. Pepper proved that the invariants are, in fact, the same [73]. The 

following definition is due to Fajtlowicz. 

Definition 3.28. For a graph G with vertices V = {v\,V2,... ,vn}, having degrees 

di = d(vi), with di < d2 < . -. < dn, and having e edges, the annihilation number 

a — a(G) is defined to the the largest index such that Yli=i di < e. 

Theorem 3.29. (Pepper [73]) For any graph G, a(G) < a(G). 

Pepper originally proved this theorem using his original definition of annihilation 

number; Fajtlowicz later found a shorter proof using the definition above (both proofs 

are in [73]). Pepper also provided examples of graphs where the annihilation number 

of a graph is a better upper bound than any of several others, including the minimum 

of the numbers of non-negative and non-positive eigenvalues (Cvetkovic's bound [13, 

Thm 3.14]). 
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Lemma 3.30. (Pepper [73]) For any graph G, a(G) > [ ^ J . 

Pepper's theorem and Butenko and Trukhanov's Theorem 3.9 are required in the 

proof of the characterization. 

Lemma 3.31. For a graph G and vertex v, a(G — v) < a(G). 

Proof. Let G be a graph and v G V(G). Let a = a{G) and a' = a(G — v). It will be 

shown that a1 < a. Let dc(w) be the degree of a vertex w in G. For a set A C V of 

vertices of G, let dc{A) be the sum of the degrees in G of the vertices in A. Thus, 

do{A) = Y1W^A^G{W). Let e = e(G) be the size of G and e' = e(G—v) = e(G)-dG(v). 

Suppose the annihilation number of G — v is at least a + 1. Then there is a set 

A C V(G - v) of \A\ = a + 1 vertices such that O?G-^(^4) < e'. Then 

dc(^) < dc-«(A) + ofc(» < e' + dG(v) = e. 

That is, there is a set of a + 1 vertices in G where the sum of their degrees is less 

than the number of edges of G, and the annihilation number of G is at least a + 1, 

contradicting the fact that the annihilation number of G is a. So the assumption that 

a(G — v) > a(G) is false. • 

Theorem 3.32. For a graph G, the independence number a. equals its annihilation 

number a if, and only if, either (1) a > | and a1 = a, or (2) a < | and there is a 

vertex v € V(G) such that a'(G — v) = a(G). 

Proof. The theorem can be easily verified for all graphs with three or fewer vertices. 

Assume that it is true for all graphs with fewer than n vertices. Let G be a graph 

with n vertices. 

Suppose a(G) > ^ ^ and a'(G) = a(G). Since a' < a < a for any graph, it 

follows that ot(G) = a(G). 

Alternately, suppose that a(G) < I!^- and there is a vertex v such that a'(G—v) = 

a(G). Since a'(G — v) < a(G — v) < a(G) < a(G) and the first and last terms are 

equal, every term must be equal and, thus, a(G) — a(G). 
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Suppose now that a(G) = a(G). It will be shown that either (1) a(G) > ^ - ^ 

and a'(G) = a(G), or (2) a(G) < ^ - ^ and there is a vertex v € V(G) such that 

a'(G -v) = a(G). 

Suppose a(G) < ^r-- G must have an edge; otherwise, a(G) = n(G) > ^ - ^ . If 

G has an edge then there is a vertex v which is not in every maximum independent 

set. So a(G -v) = a(G) = a(G). Suppose that a(G - v) < a(G). Then a(G - v) < 

a(G — v), which contradicts the fact that a < a for any graph. Since Lemma 3.31 

implies that a{G — v)< a(G), it follows that a{G — v)= a(G) and, furthermore, that 

a(G -v) = a(G - v). 

Since a(G - v) = a(G) > L ^ J = [ n ( G 7 ) + 1 ] , it follows that a(G - v) > ^f1 

and thus, by the inductive assumption, that a'(G — v) = a(G — v). Then, 

a'(G -v) = a(G - v) = a{G) = a(G - v) = a{G). 

Thus, it is shown that there is a vertex v, such that a'(G — v) = a{G). 

The remaining case to consider is when a(G) > 2^- ^n ^ m s c a s e ^ m u s ^ be shown 

that a'(G) = a(G). Let Jc be a maximum critical independent set of G. Since it was 

assumed that a(G) = a(G), a(G) > ^^- and it follows that G has a non-empty 

critical independent set. Thus, there is a vertex u € Jc. 

Suppose N(JC) — 0. So Jc is a discrete set of vertices and a'(G — Jc) = 0 and 

a'(G - Jc + u) = 1. Also a(G - Jc) - a(G) - \JC\ and a(G - Jc) = a(G) - \JC\, 

and a(G — Jc) = a(G — Jc). If a(G — Jc) > "̂  ~ c' then, the inductive assumption 

implies, a'(G — Jc) = a(G — Jc). It then follows that a{G — Jc) = 0. So Jc is also a 

maximum independent set and G is a graph with no edges. If a(G — Jc) < ~ c' 

then a(G - Jc) = n(G~2
7c)"1 and a(G - Jc + u) = "(G~Jc+")+1 > n(G-jc+u) ^ t h e 

inductive assumption implies, a'(G — Jc + u) = a(G — Jc + u). It then follows that 

a(G — Jc + u) = 1. Since u has no neighbors, this implies that a(G — Jc) = 0. It 

again follows that Jc is a maximum independent set and G is a graph with no edges. 

It was noted earlier that the theorem follows for these graphs. 
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So it can be assumed that N(JC) ^ 0. Let w be a vertex in N(JC). It follows 

from Butenko and Trukhanov's Theorem 3.9 that Jc is contained in a maximum 

independent set / . Since w <£ I, w is not in every maximum independent set of G. 

Thus, by the previous reasoning, it follows that 

a'(G -w) = a(G - w) = a(G) = a(G -w) = a(G). 

It is enough to show then that a'(G) = a'(G — w). 

Let NH(Y) be the neighbors of the set of vertices Y in the graph H. Since Jc 

is a critical independent set of G, \JC\ — \NG(JC)\ > \X\ — \NG(X)\ for any set of 

vertices X in G. Note that \JC\ - \NG(JC)\ = \JC\ - (\NG(JC) ~ w\ + 1). Let J'c be a 

maximum critical independent set in G' = G — w. So a'(G — w) = \J'C\. Note that, 

since w £ NG{JC), Jc Q V(G'). Also, \NG,(JC)\ = \NG(JC)\ - 1. Since J'c is a critical 

independent set, \J'C\ - \NG,(J'C)\ > \JC\ - \NG,(JC)\ = \JC\ - ( | iVG(^)| - 1). 

Since J'c C V(G'), w ^ ^ - There are two cases to consider: (1) the case where 

w e NG(J'C), and (2) the case where w <£ NG(J'C). UwG NG(J'C), then NG(J'C) = 

NG,{J'c)\J{w}, and | iVG(^) | = \NG,(J'C)\ + 1. Since | ^ | - | i V G , ( ^ ) | > | J c | - | iV G (J c ) | + l, 

it follows that \J'C\ - (\NG(J'C)\ - 1) > \JC\ - \NG(JC)\ + 1 and, thus, \J'C\ - \NG(J'C)\ > 

\JC\ — \NG(JC)\. So J'c is a critical independent set of G and a(G) > a'(G) > \J'C\ = 

a'(G — w) = a{G — w) = a(G). It follows that a'(G) — a'(G — w), which was to be 

shown. 

If w i NG(J'C), then NG(J'C) = NG,{J'C) and \NG{J'C)\ = \NG,(J'C)\. So \J'C\ -

1 ^ ( ^ ) 1 ^ \Jc\ - \NG'(JC)\ = \JC\ ~ \NG(JC)\. Thus, J'c is a critical independent set 

of G and a(G) > a'(G) > \J'C\ = a'(G — w) — a(G — w) = a(G), proving in this case 

too that a'(G) = a'(G — w). 

U 

Let G be a graph. The steps to determine whether a(G) = a(G) are as follows. 

1. Calculate a(G). 
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2. If a(G) > f, calculate a'(G). If a'(G) = a(G), then Theorem 3.32 implies that 

a(G) - a(G). If a'(G) ^ a(G), then Theorem 3.32 implies that a(G) ^ a(G). 

3. If a(G) < | , choose an edge vw. It cannot be that both vertex v and vertex w are 

in every maximum independent set of G. Calculate a'(G — v) and a'(G — w). 

If a(G) = a'(G — v) or a(G) = a'(G — w) then Theorem 3.32 implies that 

a(G) = a(G). 

The proof of Theorem 3.32 actually shows that if (a) a(G) = a(G), (b) a(G) < 
Ziy^, and (c) vertex u is not in every maximum independent set of G, then (d) 

a'(G — u) — a(G). Since either v or w is not in every maximum independent 

set of G then, if a(G) ^ a'(G — v) and a(G) ^ a'(G — w), it follows that 

a(G) ^ a(G). 

Since a and a' can be calculated in polynomial-time, and since the preceding algo-

rithm will terminate after at most three calculations of these invariants, determining 

whether a(G) — a(G) can be done in polynomial-time. 

3.3 An Independence Decomposition of a General 

Graph 

The critical independence number of a graph G, denoted a' = a'(G), is the cardinality 

of a maximum critical independent set. If Ic is a maximum critical independent set, 

and so a'(G) = |/c|, then clearly a' < a. It was shown above in Section 3.1 (and by 

this author in [57]) that the critical independence number of a graph can be computed 

in polynomial-time. 

A graph is independence irreducible if a' = 0. For these graphs the number of 

neighbors of any independent set of vertices is greater than the number of vertices in 

the set; fullerene graphs, for instance, are independence irreducible [57]. A graph is 
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independence reducible if a' > 0. A graph is totally independence reducible if a' = a; 

K2 is an example. It will be shown that, for any graph G, there is a set 1 C V(G) 

such that G[X] is totally independence reducible, G[XC] is independence irreducible, 

and a(G[X]) + a(G[Xc}) = a(G). 

Zhang [84] gave a different definition of the critical independence number of a 

graph. He defined it to be the quantity \IC\ — \N(IC)\ for a critical independent set 

Ic. This quantity though is not an "independence number"; that is, it is not the 

cardinality of an independent set of vertices. A better name for Zhang's invariant 

would be the critical difference of the graph. 

An obvious and inefficient algorithm for computing a' of a graph G is to find every 

independent set I of vertices of the graph and compute | / | — |AT(/)|. Then a' is the 

cardinality of the largest of the sets that maximizes this difference. A polynomial-

time algorithm for finding a Maximum Critical Independent Set (MCIS) and, thus, 

computing a' is given above (Section 3.1). 

Finding a maximum independent set in a graph and its independence number are 

NP-hard problems. When attacking these problems it would be useful to be able 

to decompose the problem into finding maximum independent sets and independence 

numbers for subgraphs whose vertex sets are disjoint and whose union is the vertex set 

of the original graph. For any graph it is shown that there is such a decomposition 

into two subgraphs, where the independence number of one can be computed in 

polynomial-time and where the critical independence number of the other is zero. 

The following terms were defined above. 

Definition 3.33. A graph is independence irredticible if a' = 0. A graph is inde-

pendence reducible if a' > 0. A graph is totally independence reducible if at' — a. 

All bipartite graphs, for instance, are totally independence reducible. This will be 

proved in Section 3.4. Other examples are in Figure 3.3. 

It will be shown that any graph can be decomposed into totally independence 
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Figure 3.2: These graphs are totally independence reducible. In the graph on the left, 

the set I = {a, c, e) is a maximum critical independent set, and a maximum independent 

set. In the middle graph, the set Ic = {a,b,c} is a maximum critical independent set, 

and a maximum independent set. The left and the middle graphs are bipartite (and, in 

fact, isomorphic); all bipartite graphs are totally independence reducible. The graph on the 

right is not bipartite; the set Ic = {a, b, c} is a maximum critical independent set, and a 

maximum independent set. For all three of these graphs a = a' = 3. 

reducible and independence irreducible subgraphs whose independence numbers sum 

to the independence number of the parent graph. 

The following characterization of graphs whose independence numbers equal their 

critical independence numbers will be needed in the proof of the main result. 

Theorem 3.34. For any graph G, a = a' if, and only if, there is a maximum critical 

independent set Ic such that Ic U N(IC) — V(G). 

Proof. Let G be a graph. Suppose first that a(G) = a'(G). Let Ic be a maximum 

critical independent set. It is also a maximum independent set by assumption and, 

thus, it and its neighbors must exhaust the vertices of G. 

Suppose now that Ic is a maximum critical independent set and ICUN(IC) = V(G). 

Theorem 3.14 implies that there is a maximum independent set I oiG which contains 

Ic. If there is a vertex v G I\IC then, by assumption, v € N(IC). But then v is adjacent 

to some vertex in Ic and / is not independent. So I = Ic and a = a'. • 
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Figure 3.3: These graphs are independence irreducible: for any independent set of vertices 

/ in these graphs, \N(I)\ > \I\. 

Since a maximum critical independent set of a graph can be found in polynomial-

time, Theorem 3.34 implies that determining whether a graph is totally independence 

reducible can be determined in polynomial-time. 

Lemma 3.35. If G is a graph with critical independent sets Ic and Jc, where J = 

Jc \ (Ic U N(IC)), and I = Ic U J then, 

1. \IcnN(Jc)\ = \Jcr\N(Ic)\, 

2. | J |> |7V(Jc) \ ( / cUiV(/ c ) | , and 

3. I is a critical independent set. 

Proof. The Matching Lemma 3.7 guarantees that there is a matching from the vertices 

in N(JC) to (a subset of) the vertices in Jc and from the vertices in N(IC) to (a subset 

of) the vertices in Ic. Since the vertices in Ic D N(Jc) C N(JC) must be matched to 

vertices in N(IC) fl Jc, and the vertices in N(IC) D Jc C N(IC) must be matched to 

vertices in Ic D N(JC), it follows that \IC n iV(Jc)| = \JC n iV(/c)|, proving (1). 

Applying the Matching Lemma again, we have that N(JC) is matched into Jc, that 

is, every vertex in N(JC) can be paired with a distinct adjacent vertex in Jc. Notice 
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Figure 3.4: Useful figures for following the proofs of Lemma 3.35 and Theorem 3.36. The 

figure on the top is a schematic of the relationship between critical independent sets Ic and 

Jc and their neighbors. The figure on the bottom is the same figure but shaded to identify 

set I = Ic U J = Ic U Jc \ (Ic U N(IC)). 
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that a vertex v in N( Jc) \ (Ic U N(IC)) cannot be matched to a vertex in Jc fl N(IC) 

under any matching, as the proof of (1) guarantees that these are only matched to 

vertices in Ic n N(JC). Furthermore, a vertex v in N(JC) \ (Ic U N(IC)) cannot be 

matched to a vertex w in Ic D Jc. If.it were, then since w € Ic and v is adjacent to 

w, it follows that v € N(IC), contradicting the fact that v £ N(IC). Thus vertices in 

iV(Jc) \ (7C U N(IC)) can only be matched to vertices in Jc \ (Ic U N(IC)). Since every 

vertex in N(JC) \ (Ic U N(IC)) is matched to a vertex in Jc \ (Ic U N(IC)), it follows 

that \J\ = \JC \ (Ic U N(Q)\ > \N(JC) \ (Ic U N(IC))\, proving (2). 

I = ICU J. Since 7C and J are independent, and J = Jc \ (Ic U N(IC)), I is 

independent. Since 7C and J are disjoint, | / | = |/c | + \J\. N(I) C N(IC) U [A^(JC) \ 

(/cUJV(/c))]and|iV(I)| < |7V(/c)| + |7V(Jc)\(/cUiV(/c))|. So, | / | - | 7V( / ) | > (|/C| + | J | ) -

(\N(IC)\ + \N{JC)\(ICUN(IC))\ = (\IC\-\N(IC)\) + (\J\-\N(JC)\(ICUN(IC))\)- Since (2) 

implies that the last term is non-negative, it follows that | / | — \N(I)\ > \IC\ — |iV(/c)| 

and, thus, that J is a critical independent set, proving (3). • 

Figure 3.5: The vertices Ic •-- {a, b} form a (maximum cardinality) critical independent set. 

The set X — Ic U iV('7c) induces a decomposition of the graph into a totally independence 

reducible subgraph G[X] and an independence irreducible subgraph G[XC], according to 

Theorem 3.36. 

Theorem 3.36. For any graph G, there is a unique set X C V(G) such that 

1. a(G) = a(G[X}) + a(G[Xc}), 

2. G[X] is totally independence reducible, 
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3. G[XC] is independence irreducible, and 

4- for every maximum critical independent set Jc of G, X = Jc U N(JC). 

Proof. Let Ic be a maximum critical independent set of G. Let X = Ic U N(IC). Ic is 

an independent set in G[X\. 

Suppose Ic is not a maximum independent set in G[X]. Let Y be an independent 

set of G[X] such that \Y\ > \IC\. Let YT = Y n Ic and YN = Y n iV(7c). So 

y = F/UFiv, |y/ | + |YJv| = \Y\, and |F , | > | / c | - 1^1- Note that 7V(>7) C N(IC)\YN. 

Then, \Yj\ - |W(y,)| > \Yj\ - \N(IC) \ YN\ > (|/c| - | ^ | ) - \N(IC) \ YN\ = |/c | -

(|Y/v| + \N{IC) \ YN\) = \IC\ — \N(IC)\. Since Yj is an independent set, Ic cannot be a 

critical independent set of G, contradicting the fact that it is. Thus, no independent 

set of G[X] can have cardinality greater than Ic, and Q ( G [ X ] ) = |/c|. 

It follows from Butenko and Trukhanov's Theorem 3.9 that Ic is contained in a 

maximum independent set / of G. So a(G) = \I\. I \ Ic is an independent set in 

Xc. So a(G[Xc]) > \I \ I\. Suppose there is an independent set I' C Xc such that 

I J'I > | / | . By construction, no vertex in Ic is adjacent in G to a vertex in Xc. Thus, 

no vertex in Ic is adjacent to a vertex in / ' . Thus, Ic U I' is an independent set in 

G, and a(G) > \IC U I'\ = \IC\ + | / ' | > |/c | + \I \ Ic\ = \I\ - a(G), a contradiction. 

Thus, / \ Ic is a maximum independent set in G[XC], and ^((^[X]) + a(G[Xc]) = 

\IC\ + \I \ Ic\ = \I\ = a(G), proving (1). 

Now suppose Ic is not a critical independent set in G[X]. Let Y be a minimum 

critical independent set oW[X]. So \Y\ - \NG[X](Y)\ > \IC\ - |iV(7c)|. Let Yj = YDlc 

and YN = Yf] N(IC). (Note that N(IC) is unambiguous as NG(IC) = NG[X}(IC)-) Let 

Y^ Q h be the set of neighbors of YN in Ic. It follows from the Matching Lemma 3.7 

that there is a matching of the vertices in NQ[X] (Y) to (a subset of) the vertices in 

Y. Since Ic is an independent set, and Y^ C Ic, the vertices in Y^ must be matched 

to vertices in YN. Thus, \YN\ > \Y^\. 

Suppose \YN\ = \Y^\. Then \YZ\ - \N(Yj)\ = (|F7| + \YN\) - (\N(Yj)\ + \YN\) = 
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\Y\ - {\N(Yj)\ + \Ylf\) > \Y\ - \NG[X](Y)\, implying that Yr is a critical independent 

set of G[X]. Since K / C K , and Y is a minimum critical independent set, it follows 

that Yi = Y, and YN = 0. Since Yj C Ic, NG(Yj) = NG[x](Yi), and \Yj\ - \NG(Yj)\ > 

\Y\—NG[x](Y)\ > \IC\ — \NG(IC)\, contradicting the fact that Ic is a critical independent 

set in G. 

So \YN\ > \Yff\. But then, for / = / c \ ^ , \I\-\NG(I)\ = \IC\Y^-\N(IC)\YN\ = 

\IC\ - \Y{,\ - (\N(IC)\ - \YN\) = (|/c| - \N(IC)\) + (\YN\ - \Y^\). Since the last term 

is positive, it follows that | / | — |A^G(/)| > |/c | — \N(IC)\, again contradicting the fact 

that Ic is a critical independent set in G. Thus, Ic is a critical independent set in 

G[X]. Since Ic U N(IC) = X, Ic is a maximum critical independent set in G[X], and 

a'(G[X]) = |/c |. So a(G[X]) = a'(G[X]) = \IC\ and G[X] is totally independence 

reducible, proving (2). 

Suppose that G[XC] contains a non-empty critical independent set Z. So \Z\ > 

\NG[xc](Z)\. No vertex in Ic is adjacent to any vertex in Z as N(IC) C X and Z C Xc. 

So JCUZ is an independent set in G. Furthermore, |iV(/cUZ)| = \N(Ic)\ + \NG[Xc](Z)\. 

So, | / C U ^ | - | A T G ( / C U ^ ) | = (t/c| + | ^ | ) - ( | A ^ ( / c ) | + |A^G[^c](^)|) = (i / c | - jA^(Jc) |) + 

(\Z\ — \NG[Xc](Z)\) > \IC\ — |iV(/c)|, contradicting the fact that Ic is a maximum 

critical independent set of G. Thus, G[XC] does not contain a non-empty critical 

independent set, ct'(G[Xc]) = 0, and G[XC] is irreducible, proving (3). 

Now suppose that Jc is a maximum critical independent set of G. Thus, since Jc 

and Ic are both maximum critical independent sets, \JC\ = |/c |. Since they are both 

critical, \JC\ - \N(JC)\ = \IC\ - \N(IC)\. It then follows that \N(JC)\ = \N(IC)\. Let 

J = Jc\(IcUN(IC)). So IcU J is an independent set. Lemma 3.35 implies that IcU J 

is a critical independent set of G. But, since J C C / C U J and Ic is a maximum critical 

independent set of G, J = 0. A parallel argument yields that 1 = 0. 

The Matching Lemma 3.7 implies that there is a matching from the vertices in 

N(JC) into the vertices in Jc. Lemma 3.35 implies that \ICDN(JC)\ = |J cnN(IC)\ . So 
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if v G N(JC) \ (N(JC)DIC), it must be matched to a vertex in J c \ (Jcfl A^(/c) = hH Jc 

and, thus, v € iV(/c fl Jc) C N(IC) fl N(JC). So every vertex in N(JC) is either in 

N(JC) fl Jc or in N(JC) n A^(/c), which implies that JV(Jc) C Ic U iV(/c). 

So both Jc and AT(JC) are subsets of 7cUiV(/c). Since \JC\ + \N(JC)\ = |Jc| + |iV(Jc)|, 

it follows that Jc U N(JC) = Ic U N(IC) = X, proving (4). 

The uniqueness of a set X C V(G!) satisfying the four conditions of the theorem 

follows immediately from (4). 

• 

3.4 An application: Konig-Egervary Graphs 

The independence number of a graph is denoted a, the critical independence number 

is a', the matching number is //, and the vertex covering number is r . One of the 

Gallai Identities is that, for any graph, a 4- r = n [70, p. 2]. For bipartite graphs, 

a + /j, = n (this is the Konig-Egervary theorem, [70]). A Konig-Egervary graph is a 

graph that satisfies this identity. There are non-bipartite Konig-Egervary graphs: the 

graph in Figure 3.4 is an example. Konig-Egervary graphs were first characterized by 

Deming in 1979 [18]. 

Ermelinda DeLaVina's program Grafnti.pc conjectured that, for any graph, a — a' 

if, and only if, r = JJL. The proof of this conjecture yields a new characterization of 

Konig-Egervary graphs. The Grafhti.pc conjecture can be rewritten: for any graph, 

a = a' if, and only if, a + /i = n; or, for a graph G, a(G) = a'(G) if, and only if, G 

is a Konig-Egervary graph. 

A graph is independence irreducible if a' — 0. For these graphs the number of 

neighbors of any independent set of vertices is greater than the number of vertices in 

the set. A graph is independence reducible if a' > 0. A graph is totally independence 

reducible if a' = a. So Graffiti.pc's conjecture can be restated again: A graph G is 
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Figure 3.6: A non-bipartite Konig-Egervary graph. The graph has vertex set V = 

{a,b,c,d,e,f} and edge set E — {ad,be,cf,de,ef,df}. So n —- |V| = 6. The set I = 

{a, b, c} C V is a maximum independent set. So a = \I\ = 3. The set M = {ad, be, c/} C E 

is a maximum matching. So /J, = \M\ = 3. Thus, a+fi = n and the graph is Konig-Egervary. 

totally independence reducible if, and only if, G is a Konig-Egervary graph. 

Theorem 3.37. (Graffiti.pc #329) For any graph, a = a' if, and only if, r = ji. 

Proof. Suppose that a(G) = a'(G). It will be shown that T(G) — fJ.(G) or, equiva-

lently, that n — a(G) — n{G). 

Let 7 be a maximum critical independent set. So a(G) = a'(G) = \I\. Since 

n — a(G) = \N(I)\, it remains to show that //(G) = |iV(/)|. Since / is independent, 

n(G) < | ^ (7 ) | . It only remains to show that /x(G) > \N(I)\. Since 7 is a critical 

independent set, the Matching Lemma 3.7 implies that there is a matching from N(I) 

into 7 and, thus, that /i(G) > \N(I)\. 

Suppose now that r(G) = n{G) or, equivalently, that n — a(G) = (J,(G). It will 

be shown that a(G) = a'(G). a'(G) < a(G). Suppose a'(G) < a(G). Let 7C be 

a maximum critical independent set. Butenko and Trukhanov proved that every 

critical independent set is contained in a maximum independent set [10]. Let J be 

a maximum independent set such that 7C C J. Since n(G) = n{G) — ot(G), J is 
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independent, and \V \ J\ — n(G) — a(G), there is a matching from V \ J into J. 

This implies that each vertex in N(J) \ N(IC) is matched to a vertex in J \ Ic. So 

\J\IC\>\N(J)\N(IC)\. 

It will now be shown that \J\ — \N(J)\ > \Ie\ — \N(IC)\, implying that Ic is 

not a maximum critical independent set, as it was assumed to be. \J\ — \N(J)\ = 

(\J\IC\ + \IC\)~(\N(J)\N(IC)\ + \N(IC)\) = (\IC\-\N(IC)) + (\J\IC\-\N(J)\N(IC)\) > 

\IC\ — |A^"(JC)|. It follows that Ic — J, \IC\ — \J\, and a'{G) = a(G), which was to be 

shown. • 

3.5 Open Problems on Critical Independent Sets 

1. Critical Independent Sets 

(a) Is every critical weighted independent set contained in a maximum critical 

weighted independent set? 

(b) Is it possible to use critical independent sets to speed up algorithms for 

finding maximum independent sets and the independence number in inde-

pendence irreducible graphs? 

(c) Do 2-connected independence irreducible graphs having an even number 

vertices have perfect matchings? Are 2-connected independence irreducible 

graphs having an odd number vertices pseudo-perfect? 

(d) Are power law graphs independence reducible? 

2. The Binding and Isoperimetric Numbers 

Zhang defined the notions of a critical set and a critical independent set in a graph 

partly because of their connection to the pre-existing interest of independent sets in 

graphs, and partly because of their connection to the binding number and isoperi-

metric number of a graph [84]. These concepts are defined below. The connection 
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between critical independent sets and the binding number is explained here. What is 

the connection between critical independent sets and the isoperimetric number? 

• The binding number of a graph G is 

b(G) = m m { l ^ p i : U C V(G), U ^ 0 and N(U) ^ V(G)}. 

• The boundary S(U) of a set U is the set of edges incident to exactly one vertex 

in f . 

• The isoperimetric number or Cheeger constant of a graph G is 

i(G) = min{^^ : U C V(G), U + 0 and \U\ < ^-^-}. 
\U\ 2 

Let G be a graph and 17 be a set such that b{G) - ™ ± . Then |iV([7)| = 6(G)\U\. 

Theorem 3.38. For a connected graph G with binding number 6(G): 

• b < 1 if, and only if, there is a non-empty critical independent set (that is, G 

is independence reducible). 

• b>lif, and only if, the empty set is the only critical independent set (that is, 

G is independence irreducible. 

Proof. (1) and (2) are obviously equivalent, so it is enough to prove (1). Suppose 

6(G) = 6 < 1. There is a non-empty set U, N(U) ^ V, such that 6 = lJ^. 

Then \N{U)\ = b\U\ < \U\ and \U\ - \N(U)\ > 0. Let I = U\ N{U). Then 

|/ | - \N(I)\ = \U\ - \N(U)\ > 0. Suppose 1 = 0. Then U C N(U). So \U\ < \N(U)\ 

and, thus, \U\ = \N(U)\. Since G is connected, it follows that N(U) = V(G), 

contradicting the definition of U. 

Now, suppose G has a non-empty critical independent set / . That is, let / be 

a non-empty independent set that maximizes |/ | — \N(I)\. So |/ | — |A^(/)| > 0, 

| / | > |7V(/)|, and ™ l < 1. Since 6 = 6(G) is the minimum of ™ i for all non-

empty sets U,U^V. b< ^ < 1. D 
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